A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synergistic anti-aging effect of Dendrobium officinale polysaccharide and spermidine: A metabolomics analysis focusing on the regulation of lipid, nucleotide and energy metabolism. | LitMetric

Synergistic anti-aging effect of Dendrobium officinale polysaccharide and spermidine: A metabolomics analysis focusing on the regulation of lipid, nucleotide and energy metabolism.

Int J Biol Macromol

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Published: October 2024

AI Article Synopsis

  • * Combining DOP and Spd showed a strong synergistic effect in extending the lifespan of C. elegans, with the optimal doses being 250 mg/L DOP and 29.0 mg/L Spd, indicated by high combination indices in stress tolerance assays.
  • * Metabolomic analysis revealed that these compounds significantly alter lipid metabolism, suggesting that their combined anti-aging benefits primarily result from modifications in lipid metabolic processes, further validated using a high-fat diet mouse model.

Article Abstract

The importance of synergy has been underscored in recent medical research for augmenting the efficacy of therapeutic interventions, targeting multiple biological pathways simultaneously. Our prior research elucidated that Dendrobium officinale polysaccharide (DOP) has the potential to prolong the lifespan of Caenorhabditis elegans (C. elegans) via regulating gut microbiota. Concurrently, spermidine (Spd), as a mimicking caloric restriction, facilitates autophagy and exerts a pronounced anti-aging effect. To enhance the anti-aging capabilities of DOP, we conducted a comprehensive study examining the combined effects of DOP and Spd in C. elegans, incorporating metabolomics analysis to investigate the underlying mechanisms. A combination of 250 mg/L DOP and 29.0 mg/L Spd yielded the most favorable outcomes in lifespan extension, evidencing a synergistic effect with a combination index (CI) of 0.65. In oxidative and heat stress tolerance assays, the observed CIs were 0.50 and 0.33, respectively. Metabolomic analysis highlighted significant alterations in metabolites related to lipid, nucleotide and energy metabolism, notably regulating glycerol 3-phosphate, linoleoyl glycerol, docosapentaenoic acid and β-nicotinamide mononucleotide, nicotinamide adenine dinucleotide. The effects of DS on lipid metabolism were further validated using Oil Red O staining and triglyceride level in C. elegans. The results indicated that DS may primarily be via modulating lipid metabolism. To further confirm these findings, a high-fat diet-induced mouse model was employed. Consequently, it can be inferred that the synergistic anti-aging impact of DOP and Spd is likely mediated primarily through alterations in lipid metabolic processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.135098DOI Listing

Publication Analysis

Top Keywords

synergistic anti-aging
8
dendrobium officinale
8
officinale polysaccharide
8
metabolomics analysis
8
lipid nucleotide
8
nucleotide energy
8
energy metabolism
8
dop spd
8
lipid metabolism
8
lipid
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!