Oral administration of β-galactosidase, which alleviate lactose intolerance symptoms, is challenging due to its instability throughout the gastrointestinal tract. The objective of this work was to make correlations between the in-vitro digestion and chemical characteristics of a β-galactosidase/carboxymethylchitosan-silica biocatalyst powder. This was obtained by a one-pot silica gel route assisted by carboxymethyl chitosan, using maltose as lyoprotectant. The chemical characterization allowed to understand as was modulated the calcium incorporation, through electrostatic interactions and as maltose protects the enzyme from agglomeration, by vitrification and formation of hydrogen bonds. The formulated biocatalyst could be a complement of silicon and calcium, in turn, it preserves 96 % and 63 % of the enzymatic activity compared with the biocatalyst control (without simulated digestion), in the gastric and intestinal phases, respectively. This activity was even greater than that observed in the commercial products evaluated in these phases. Likewise, the biocatalyst obtained retained its activity after 12 months of storage at 25 °C and it did not present cytotoxicity in cells derived from human colon epithelial mucosa (NCM460) under the conditions and concentrations evaluated. These results make this biocatalyst in an excellent candidate for release of this enzyme. Therefore, it could be useful for lactose-intolerant people.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.135106DOI Listing

Publication Analysis

Top Keywords

biocatalyst
5
correlations vitro
4
vitro gastrointestinal
4
gastrointestinal digestion
4
digestion β-galactosidase/carboxymethylchitosan-silica
4
β-galactosidase/carboxymethylchitosan-silica dosage
4
dosage powder
4
powder physicochemical
4
physicochemical properties
4
properties oral
4

Similar Publications

Mapping the Protein Phosphatase 1 Interactome in Human Cytomegalovirus Infection.

Viruses

December 2024

Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.

Protein phosphorylation is a crucial regulatory mechanism in cellular homeostasis. The human cytomegalovirus (HCMV) incorporates protein phosphatase 1 (PP1) into its tegument, yet the biological relevance and mechanisms of this incorporation remain unclear. Our study offers the first characterization of the PP1 interactome during HCMV infection and its alterations.

View Article and Find Full Text PDF

This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.

View Article and Find Full Text PDF

Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein.

View Article and Find Full Text PDF

This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds and exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153.

View Article and Find Full Text PDF

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!