A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3ukui77p3d313mg8k6c3s7c1rhlu3ub1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly efficient malachite green adsorption by bacterial cellulose and bacterial cellulose/locust bean gum composite. | LitMetric

Highly efficient malachite green adsorption by bacterial cellulose and bacterial cellulose/locust bean gum composite.

Int J Biol Macromol

School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China. Electronic address:

Published: November 2024

AI Article Synopsis

  • This study explores the use of bacterial cellulose (BC) and a composite of BC with locust bean gum (LBG) made from banana hydrolysate as adsorbents for organic dye removal, focusing on malachite green (MG).
  • The BC/LBG(2%) composite showed improved swelling and textural properties while maintaining BC’s structure, resulting in an impressive MG adsorption capacity over 95% and 2000 mg/g, with a preference for MG against other dyes.
  • The adsorption process involved both chemical and physical interactions and demonstrated excellent reusability, maintaining over 88% efficiency after five regeneration cycles, making it a promising option for treating MG-laden wastewater.

Article Abstract

In this study, bacterial cellulose (BC) and BC/locust bean gum (LBG) composite produced from banana hydrolysate were both used as the adsorbent for various organic dyes adsorption especially for malachite green (MG) adsorption for the first time. The BC/LBG(2%) composite exhibited significantly enhanced swelling rate and textural characteristics while maintained the basic structure of BC as depicted by XRD, FT-IR, and NMR, providing a foundation for its application as an excellent adsorbent. The composite exhibited a high adsorption rate and adsorption capacity for MG (exceeding 95 % and 2000 mg/g), and had a good selectivity for MG adsorption in the solution containing crystal violet (CV), rhodamine B (RB), and methyl orange (MO). The MG adsorption process conformed to multiple models including Langmuir and pseudo-first-order models. And the adsorption mechanism mainly comprised chemical adsorption (hydrogen bonding and electrostatic interactions) and physical adsorption. The reusability of BC/LBG(2%) composite was attractive for industrial application that the MG adsorption rate reduced merely a little (still higher than 88 %) after the 5 regeneration process. Overall, considering its adsorption capacity, selectivity, and reusability, BC/LBG(2%) composite prepared by in-situ fermentation with LBG addition was a competent adsorbent for MG adsorption and MG containing wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134991DOI Listing

Publication Analysis

Top Keywords

adsorption
13
bc/lbg2% composite
12
malachite green
8
green adsorption
8
bacterial cellulose
8
bean gum
8
composite exhibited
8
adsorption rate
8
adsorption capacity
8
reusability bc/lbg2%
8

Similar Publications

The present study introduces a minimalistic and cost-effective approach to synthesising Gold nanoparticles (AuNPs) using aqueous leaf extracts of Andrographis paniculata. In this synthesis, bioactive metabolites in the leaf extract act as reducing agents, converting Au³⁺ ions to metallic Au⁰, while proteins in the extract form a stabilising layer around the nanoparticles to prevent agglomeration and maintain particle size stability. The synthesised AuNPs were systematically characterised using a range of analytical techniques.

View Article and Find Full Text PDF

Integration of Phosphorus in PdCr Metallene for Enhanced CO-Tolerant Alcohol Electrooxidation.

Inorg Chem

December 2024

Institute for Energy Research, Institute of Carbon Neutrality Development, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Pd-based alloys are among the most attractive catalysts for direct alcohol fuel cells. However, their widespread use is limited by the high cost of Pd and their susceptibility to deactivation by surface-adsorbed reaction intermediates, particularly CO. In this study, we engineered an ultrathin 2D PdCr metallene to minimize Pd usage and doped it with phosphorus to enhance its CO tolerance.

View Article and Find Full Text PDF

Levofloxacin-loaded silicone contact lenses materials for ocular drug delivery.

J Biomater Appl

December 2024

College of Chemistry and Chemical Engineering, Southeast University, Nanjing, China.

Silicone contact lenses (SCL), as an emerging ocular drug delivery system, achieve controlled drug release. However, the existing drug loading methods have limitations such as low drug uptake, complicated operation process, poor welling rate and transmittance of the lens after drug loading. In this study, an effective microemulsion soaking method was proposed to increase the drug-loading capacity of silicone contact lenses.

View Article and Find Full Text PDF

As the main protein forming the vascular extracellular matrix, collagen has a weak antigenicity, making it an attractive candidate for coatings of vascular grafts. In order to bring antithrombotic properties to collagen for obtaining suitable blood compatibility of surfaces and further bioactive molecule carrying capacity, heparinization appears as a method of choice. Thus, in this article, pH-driven self-assembly was used to form collagen-based hydrogels with physical incorporation of heparins, especially low molecular weight heparin or unfractionated heparin at 1 IU/mL and 6 IU/mL.

View Article and Find Full Text PDF

pH-dependent emulsifying properties of pea protein isolate: Investigation of the structure - Function relationship.

Int J Biol Macromol

December 2024

Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France. Electronic address:

This study investigated the relationship between pea protein isolates (PPI) emulsifying properties and their structural, interfacial, and physicochemical characteristics at various pH values (native pH, 7, 5, and 3). Emulsion characteristics including emulsifying activity and stability, droplet size, flocculation index (FI) and coalescence index (CI) were examined. Additionally, physicochemical properties such as solubility, zeta potential, surface hydrophobicity, interfacial protein adsorption and protein conformation were analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!