Anterior gradient-2 (AGR2) is highly expressed in several tumors and plays an important role in tumor development. However, the biological function of AGR2 in teratomas has not yet been thoroughly studied. In this study, AGR2 was found to be upregulated in teratoma tissues and in human testicular teratoma cell lines by Western blotting and qRT-PCR assays. A DNA Methylation-Specific PCR assay demonstrated that AGR2 upregulation resulted from hypomethylated AGR2 in teratoma cells. NCC-IT and NT2-D1 cells were transfected with pcDNA-AGR2 or sh-AGR2 to obtain AGR2-overexpressed or -silenced cells, and cell proliferation, invasion and glycolysis were determined using CCK-8, 5-ethynyl-2'-deoxyuridine (EdU), Transwell assays, and commercial kits. The results revealed that overexpression of AGR2 promoted teratoma cell proliferation and invasion and elevated glycolysis levels evidencing by the increase in lactate secretion, glucose consumption, ATP levels and the expression of glycolysis-related proteins, while knockdown of AGR2 showed the opposite results. The interactions between AGR2 and annexin A2 (AnXA2), as well as between AnXA2 and epidermal growth factor receptor (EGFR) were verified by co-immunoprecipitation assay. Mechanistic studies revealed that AGR2 interacts with AnXA2 and increases the level of AnXA2 to recruit more AnXA2 to EGFR, there by promoting EGFR expression. A series of rescue experiments showed that knockdown of AnXA2 or EGFR weakened the promotional effects of AGR2 overexpression on the proliferation, invasion, and glycolysis of teratoma cells. Finally, tumorigenicity assays were performed using NT2-D1 cells stably transfected with either LV-NC-shRNA or LV-shAGR2. The results showed that AGR2 knockdown significantly inhibited teratoma tumor growth in vivo. In conclusion, our data suggested that AGR2 facilitates glycolysis in teratomas through promoting EGFR expression by interacting with AnXA2, thereby promoting teratoma cells proliferation and invasion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2024.114228 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!