A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

SiMix: A domain generalization method for cross-site brain MRI harmonization via site mixing. | LitMetric

SiMix: A domain generalization method for cross-site brain MRI harmonization via site mixing.

Neuroimage

Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China. Electronic address:

Published: October 2024

Brain magnetic resonance imaging (MRI) is widely used in clinical practice for disease diagnosis. However, MRI scans acquired at different sites can have different appearances due to the difference in the hardware, pulse sequence, and imaging parameter. It is important to reduce or eliminate such cross-site variations with brain MRI harmonization so that downstream image processing and analysis is performed consistently. Previous works on the harmonization problem require the data acquired from the sites of interest for model training. But in real-world scenarios there can be test data from a new site of interest after the model is trained, and training data from the new site is unavailable when the model is trained. In this case, previous methods cannot optimally handle the test data from the new unseen site. To address the problem, in this work we explore domain generalization for brain MRI harmonization and propose Site Mix (SiMix). We assume that images of travelling subjects are acquired at a few existing sites for model training. To allow the training data to better represent the test data from unseen sites, we first propose to mix the training images belonging to different sites stochastically, which substantially increases the diversity of the training data while preserving the authenticity of the mixed training images. Second, at test time, when a test image from an unseen site is given, we propose a multiview strategy that perturbs the test image with preserved authenticity and ensembles the harmonization results of the perturbed images for improved harmonization quality. To validate SiMix, we performed experiments on the publicly available SRPBS dataset and MUSHAC dataset that comprised brain MRI acquired at nine and two different sites, respectively. The results indicate that SiMix improves brain MRI harmonization for unseen sites, and it is also beneficial to the harmonization of existing sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2024.120812DOI Listing

Publication Analysis

Top Keywords

brain mri
20
mri harmonization
16
acquired sites
12
test data
12
training data
12
domain generalization
8
harmonization
8
sites
8
interest model
8
model training
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!