Nanocolloids in the soil environment: Transformation, transport and ecological effects.

Environ Res

Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China. Electronic address:

Published: December 2024

Nanocolloids (Ncs) are ubiquitous in natural systems and play a critical role in the biogeochemical cycling of trace metals and the mobility of organic pollutants. However, the environmental behavior and ecological effects of Ncs in the soil remain largely unknown. The accumulation of Ncs may have detrimental or beneficial effects on different compartments of the soil environment. This review discusses the major transformation processes (e.g., agglomeration/aggregation, absorption, deposition, dissolution, and redox reactions), transport, bioavailability of Ncs, and their roles in element cycles in soil systems. Notably, Ncs can act as effective carriers for other pollutants and contribute to environmental pollution by spreading pathogens, nutrients, heavy metals, and organic contaminants to adjacent water bodies or groundwater. Finally, the key knowledge gaps are highlighted to better predict their potential risks, and important new directions include exploring the geochemical process and mechanism of Ncs's formation; elucidating the transformation, transport, and ultimate fate of Ncs, and their long-term effect on contaminants, organisms, and elemental cycling; and identifying the impact on the growth and quality of important crops, evaluating its dominant effect on agro-ecosystems in the soil environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2024.119852DOI Listing

Publication Analysis

Top Keywords

soil environment
12
transformation transport
8
ecological effects
8
ncs
6
nanocolloids soil
4
environment transformation
4
transport ecological
4
effects nanocolloids
4
nanocolloids ncs
4
ncs ubiquitous
4

Similar Publications

Research on the Mechanical Properties of EPS Lightweight Soil Mixed with Fly Ash.

Polymers (Basel)

December 2024

School of Civil Engineering, Architectural and Environment, Hubei University of Technology, Wuhan 430068, China.

Expanded polystyrene (EPS) bead-lightweight soil composites are a new type of artificial geotechnical material with low density and high strength. We applied EPS bead-lightweight soil in this project, replacing partial cement with fly ash to reduce construction costs. EPS beads were used as a lightweight material and cement and fly ash as curing agents in the raw soil were used to make EPS lightweight soil mixed with fly ash.

View Article and Find Full Text PDF

As is widely accepted, cumulative strain and improvement mechanisms of stabilized soil are critical factors for the long-term reliable operation of expressways and high-speed railways. Based on relevant research findings, xanthan gum biopolymer is regarded as a green and environmentally friendly curing agent in comparison to traditional stabilizers, such as cement, lime, and fly ash. However, little attention has been devoted to the cumulative strain and improvement mechanisms of soil reinforced by xanthan gum biopolymer under traffic loading.

View Article and Find Full Text PDF

Revitalizing Soybean Plants in Saline, Cd-Polluted Soil Using Si-NPs, Biochar, and PGPR.

Plants (Basel)

December 2024

Department of Agricultural Microbiology, Agriculture and Biology Research Institute, National Research Centre, 33 EI Buhouth St., Dokki, Cairo 12622, Egypt.

Excessive irrigation of saline-alkaline soils with Cd-contaminated wastewater has resulted in deterioration of both soil and plant quality. To an investigate this, a study was conducted to explore the effects of biochar (applied at 10 t ha), PGPRs ( (USDA 110) + at 1:1 ratio), and Si-NPs (25 mg L) on soybean plants grown in saline-alkali soil irrigated with wastewater. The results showed that the trio-combination of biochar with PGPRs, (as soil amendments) and Si-NPs (as foliar spraying), was more effective than individual or coupled applications in reducing Cd bioavailability in the soil, minimizing its absorption, translocation and bioconcentration in soybean tissues.

View Article and Find Full Text PDF

The relationships between environmental characteristics and species richness in the grasslands of the Colombian Orinoquia are presented and analyzed using an ordinal logistic regression model. Ordinal and scale covariates were included, and their bivariate significance was assessed using Spearman's rho and Kendall's Tau-b. The covariates that showed statistical significance with the weighted richness thresholds (WRT) and defined the model were the soil depth and the soil moisture regime, both of which had positive correlations.

View Article and Find Full Text PDF

There are discrepancies that exist in the effects of different land uses on soil organic carbon (SOC) and soil microbial carbon metabolism functions. However, the impact of land-use type changes on soil microbial carbon metabolism in alpine grassland arid areas is not well understood, hindering our understanding of the carbon cycling processes in these ecosystems. Therefore, we chose three types of land use (continuous reclamation of grassland (RG), abandoned grassland (AG), and natural grazing grassland (GG)) to study the microbial carbon metabolism and its driving factors by the Biolog-ECO method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!