Chloroplast proteins are imported via the translocon at the outer chloroplast membrane (TOC)-translocon at the inner chloroplast membrane (TIC) supercomplex, driven by an ATPase motor. The Ycf2-FtsHi complex has been identified as the chloroplast import motor. However, its assembly and cooperation with the TIC complex during preprotein translocation remain unclear. Here, we present the structures of the Ycf2-FtsHi and TIC complexes from Arabidopsis and an ultracomplex formed between them from Pisum. The Ycf2-FtsHi structure reveals a heterohexameric AAA+ ATPase motor module with characteristic features. Four previously uncharacterized components of Ycf2-FtsHi were identified, which aid in complex assembly and anchoring of the motor module at a tilted angle relative to the membrane. When considering the structures of the TIC complex and the TIC-Ycf2-FtsHi ultracomplex together, it becomes evident that the tilted motor module of Ycf2-FtsHi enables its close contact with the TIC complex, thereby facilitating efficient preprotein translocation. Our study provides valuable structural insights into the chloroplast protein import process in land plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cell.2024.08.003 | DOI Listing |
J Colloid Interface Sci
December 2024
Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
Developing advanced heterogeneous catalysts through structural modifications effectively enhances the catalytic activity of non-homogeneous catalysts for removing emerging micropollutants (EMPs). In this study, MoTiCT@Co with Mo vacancies was synthesized using the Lewis molten salt method, which efficiently activates peroxymonosulfate (PMS) and continuously degrades EMPs in water. The abundant Mo vacancy structure in the material acts as an anchoring site for Co nanoparticles and a co-catalytic site for Fenton-like reactions, enabling PMS adsorption and activation.
View Article and Find Full Text PDFCancer Imaging
January 2025
Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
Background: Prostate cancer (PCa) is the leading cause of cancer-related morbidity and mortality in men worldwide. An early and accurate diagnosis is crucial for effective treatment and prognosis. Traditional invasive procedures such as image-guided prostate biopsy often cause discomfort and complications, deterring some patients from undergoing these necessary tests.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Plant and Environmental Science, University of Copenhagen, 1871 Frederiksberg, Denmark.
The data processing workflows for comprehensive two-dimensional liquid chromatography (LC × LC) hyphenated to high-resolution mass spectrometry (HRMS) operated in data-independent acquisition (DIA) are limited compared to their one-dimensional counterparts. A two-step workflow is proposed to extract pure mass spectra from LC × LC-HRMS. First, a mass filtering (MF) algorithm groups ions belonging to the same compound based on their elution profile similarity in the first (D) and second dimension (D).
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
December 2024
Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China.
Purpose: Tic disorders (TD) are common neurodevelopmental disorders characterized by heterogeneous tic symptoms in children, making diagnostic classification difficult. This complexity requires accurate subtyping using data-driven computational methods to identify patterns within clinical data. This systematic review primarily summarizes the current evidence for the classification of TD using a data-driven approach.
View Article and Find Full Text PDFMagn Reson Med
December 2024
Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
Purpose: To develop and validate a novel analytical approach simplifying , , proton density (PD), and off-resonance quantifications from phase-cycled balanced steady-state free precession (bSSFP) data. Additionally, to introduce a method to correct aliasing effects in undersampled bSSFP profiles.
Theory And Methods: Off-resonant-encoded analytical parameter quantification using complex linearized equations (ORACLE) provides analytical solutions for bSSFP profiles.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!