Optimization and shielding design of a thermal neutron device based on D-D neutron generator with Geant4 toolkit.

Appl Radiat Isot

Chengdu University of Technology, Chengdu, 610059, China; Sichuan University of Science & Engineering, Zigong, 643000, China. Electronic address:

Published: October 2024

Neutron activation analysis is a highly sensitive non-destructive testing technique with important applications in industry, geoscience, medical therapy, etc. This work designed and optimized a thermal neutron device that utilized a portable D-D neutron generator, and the Monte Carlo method with the Geant4 toolkit was applied to simulation. The objective of the optimized design is to maximize the thermal neutron flux at the output surface and increase the utilization efficiency of the neutron generator. A parameter K was defined as a measure of the device's slowing capacity for neutrons and was used to determine the optimized device geometry. The simulation considered the contribution of different types and sizes of moderators and reflectors to the thermal neutron intensity to obtain the optimal size. The shielding protection of the device was then designed. The effectiveness of shielding with different thicknesses was evaluated using three dose reference points. The results indicated that the optimized device can achieve a maximum thermal neutron flux of 1.97 × 10 n∙cm∙s at the output surface by using high-density polyethylene (HDPE) as the moderator and nickel as the reflector. It was determined that using 45 cm of HDPE and 9 cm of lead protection in sequence along the neutron head axis would reduce the dose rate at the reference point, located 5 cm from the surface of the device, below the safety limit of 2.5 μSv/h.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2024.111483DOI Listing

Publication Analysis

Top Keywords

thermal neutron
20
neutron generator
12
neutron
10
neutron device
8
d-d neutron
8
geant4 toolkit
8
neutron flux
8
output surface
8
optimized device
8
device
6

Similar Publications

H*10 neutron dosimetry (unlike gamma dosimetry), requires consideration of neutron energy spectra due to the 20× variation of the weight factor over the thermal-to-fast energy range, as well as the neutron radiation field dose rates ranging from cosmic, ~.01 μSv h-1 levels to commonly encountered ~10-200 μSv h-1 in nuclear laboratories/processing plants, and upwards of 104 Sv h-1 in nuclear reactor environments. This paper discusses the outcome of the comparison of spectrum-weighted neutron dosimetry covering thermal-to-fast energy using the novel H*-TMFD spectroscopy-enabled sensor system in comparison with measurements using state-of-the-art neutron dosimetry systems at SRNS-Rotating Spectrometer (ROSPEC), and non-spectroscopic Eberline ASP2E ("Eberline") and Ludlum 42-49B ("Ludlum") survey instrumentation.

View Article and Find Full Text PDF

A Manufacturing Technique for Binary Clathrate Hydrates for Cold and Very Cold Neutron Production.

Materials (Basel)

January 2025

Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.

Intense sources of very cold neutrons (VCNs) would be beneficial for various neutron scattering techniques and low-energy particle physics experiments. Binary clathrate hydrates hosting deuterated tetrahydrofuran (THF-d) and dioxygen show promise as potential moderators for such sources due to a rich spectrum of localized low-energy excitations of the encaged guest molecules. In this article, we present a reliable manufacturing technique for such hydrates.

View Article and Find Full Text PDF

To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model.

View Article and Find Full Text PDF

Any experiment aiming to measure rare events, like Coherent Elastic neutrino-Nucleus Scattering (CE NS) or hypothetical Dark Matter scattering, via nuclear recoils in cryogenic detectors relies crucially on a precise detector calibration at sub-keV energies. The Crab collaboration developed a new calibration technique based on the capture of thermal neutrons inside the target crystal. Together with the Nucleus experiment, first measurements with a moderated Cf neutron source and a cryogenic detector were taken.

View Article and Find Full Text PDF

Transcriptome analysis of human oral squamous cancer SAS cells as an early response after boron neutron capture therapy.

Appl Radiat Isot

January 2025

Department of Molecular and Genomic Biomedicine, Nagasaki University Graduate School of Biomedical Sciences, 852-8523, Nagasaki, Japan; Central Radioisotope Division, National Cancer Center Research Institute, 104-0045, Tokyo, Japan; Division of BNCT, EPOC, National Cancer Center, Tokyo, Japan; Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, 104-0045, Tokyo, Japan. Electronic address:

Boron neutron capture therapy (BNCT) is based on nuclear reactions between thermal neutron and boron-10 preferentially distributed in the cancer cells. B-boronophenylalanine (BPA) is the approved drug for treatment of oral cancers for BNCT. However, the predictive biomarkers to evaluate therapeutic efficacy and side-effects have not been clarified yet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!