A rapid and accurate fluorescent sensor array based on lanthanide metal-organic framework for identification and determination of perfluorinated compounds.

Talanta

Department of Analytical Chemistry, College of Chemistry, Jilin University, 2699 Qianiin Street, Changchun, 130012, China. Electronic address:

Published: December 2024

Perfluorinated compounds (PFCs), as an important class of environmental pollutants, have chemical and structural similarities that make their detection a great technical challenge. This study synthesized three species of metal-organic frameworks (MOFs) using different lanthanide metal ions or organic ligands, which were integrated into a fluorescent sensor array. This innovative approach offers a straightforward, rapid, and precise detection strategy for PFCs. Different ionization properties and fluorinated hydrophobic tails of PFCs lead to different electrostatic attraction and hydrophobic effects between PFCs and sensing elements, which become the basis for differential sensing. Furthermore, the fluorescence signal is more convenient to collect, making the sensor array simple to complete the identification. Combined with pattern recognition methods, the array successfully identified seven kinds of PFCs and mixtures with a classification accuracy of 100 % and a detection limit as low as 51 nM. Finally, the utility of the sensor array in river water sample analysis was verified. The strategy provides an effective method for identifying and determining PFCs and offers new opportunities for developing sensor arrays based on lanthanide MOFs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2024.126764DOI Listing

Publication Analysis

Top Keywords

sensor array
16
fluorescent sensor
8
based lanthanide
8
perfluorinated compounds
8
pfcs
6
sensor
5
array
5
rapid accurate
4
accurate fluorescent
4
array based
4

Similar Publications

Metal-organic frameworks (MOFs) are porous, ordered arrays formed by coordination bonds between organic ligands and metal ions or clusters. The highly tunable properties of the MOF structure and performance make it possible to meet the needs of many applications. Conductive MOFs are essential in the domain of sensing due to their electrical conductivity, porosity, and catalytic properties, offering an effective platform for detection.

View Article and Find Full Text PDF

A Bifunctional "Two-in-One" Array for Simultaneous Diagnosis of Irritable Bowel Syndrome and Identification of Low-FODMAP Diets.

J Agric Food Chem

January 2025

State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.

Irritable bowel syndrome (IBS) is a globally prevalent functional gastrointestinal disorder frequently misdiagnosed due to overlapping symptoms with other diseases. Currently, there are no rapid and effective diagnostic or therapeutic approaches for IBS. Despite this, low-FODMAP diets (LFDs) have become a major dietary intervention strategy for symptom relief.

View Article and Find Full Text PDF

Despite the various benefits of chlorpromazine, its misuse and overdose may lead to severe side effects, therefore, creating a user-friendly point-of-care device for monitoring the levels of chlorpromazine drug to manage the potential side effects and ensure the effective and safe use of the medication is highly desired. In this report, we have demonstrated a simple and scalable manufacturing process for the development of a 3D-printed conducting microneedle array-based electrochemical point-of-care device for the minimally invasive sensing of chlorpromazine. We used an inkjet printer to print the carbon and silver ink onto a customized 3D-printed ultrasharp microneedle array for the preparation of counter, working, and reference electrodes.

View Article and Find Full Text PDF

Plug-In Design of the Microneedle Electrode Array for Multi-Parameter Biochemical Sensing in Gouty Arthritis.

ACS Sens

January 2025

State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology; Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510006, China.

Gouty arthritis is one of the most common forms of inflammatory arthritis and has brought a significant burden on patients and society. Current strategies for managing gout primarily focus on long-term urate-lowering therapy. With the rapid advancement of point-of-care testing (POCT) technology, continuous monitoring of gout-related biomarkers like uric acid (UA) or inflammatory cytokines can provide rapid and personalized diagnosis for gout management.

View Article and Find Full Text PDF

The integration of flexible electronics and photonics has the potential to create revolutionary technologies, yet it has been challenging to marry electronic and photonic components on a single polymer device, especially through high-volume manufacturing. Here, we present a robust, chiplet-level heterogeneous integration of polymer-based circuits (CHIP), where several post-fabricated, ultrathin, polymer electronic, and optoelectronic chiplets are vertically bonded into one single chip at room temperature and then shaped into application-specific form factors with monolithic Input/Output (I/O). As a demonstration, we applied this process and developed a flexible 3D-integrated optrode with high-density arrays of microelectrodes for electrical recording and micro light-emitting diodes (μLEDs) for optogenetic stimulation while with unprecedented integration of additional temperature sensors for bio-safe operations and shielding designs for optoelectronic artifact prevention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!