A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamically Tunable Circularly Polarized Selectivity in Plasmon-Enhanced Halide Perovskite Nanocrystal Glasses. | LitMetric

Dynamically Tunable Circularly Polarized Selectivity in Plasmon-Enhanced Halide Perovskite Nanocrystal Glasses.

J Phys Chem Lett

Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China.

Published: September 2024

Ultrafast spin manipulation for optical spin-logic applications requires material systems with strong spin-selective light-matter interactions. The optical Stark effect can realize spin-selective light-matter interactions by breaking the degeneracy of spin-selective transitions with an external electric field. Halide perovskites have large exciton binding energies, which enable a room-temperature optical Stark effect. However, halide perovskites are prone to degradation when interacting with light and polar solvents, limiting further integration with nanophotonic structures. We demonstrate a hybrid material system consisting of CsPbBr nanocrystal glass weakly coupled to resonant plasmonic silver nanoparticles, showing ultrafast tunable spin-based polarization selectivity at room temperature. We performed circularly polarized pump-probe characterizations to investigate the optical Stark effect in this material system, which resulted in a maximum energy shift of ∼3.67 meV (detuning energy of 0.11 eV and pump intensity of 0.62 GW/cm). We show that halide perovskite nanocrystal glasses have excellent resistance to heat and moisture, which may be favorable for integration with nanophotonic structures for further engineering polarization states, energy tuning, and coherence time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c01878DOI Listing

Publication Analysis

Top Keywords

optical stark
12
circularly polarized
8
halide perovskite
8
perovskite nanocrystal
8
nanocrystal glasses
8
spin-selective light-matter
8
light-matter interactions
8
halide perovskites
8
integration nanophotonic
8
nanophotonic structures
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!