Infrared spectra of acetylene-water complexes are studied in the regions of the HO ν bend (1600 cm) and the DO ν/ν stretches (2670-2808 cm), using tunable infrared sources to probe a pulsed supersonic slit jet expansion. In the HO bend region, there is a puzzling absence of = 0 transitions for CH-HO, while both = 0 and 1 are observed for CD-HO. This continues a pattern of "missing" states noted in previous infrared studies of acetylene-water. Noticeable line broadening gives estimates of upper state predissociation lifetimes of about 1.6 ns for CD-HO with = 1, 0.8 ns for CH-HO with = 1, and 0.8 ns for CD-HO with = 0. The lifetime for CH-HO = 0 must be much shorter (<0.05 ns) since rapid predissociation seems to be the only explanation for its absence in the spectrum. In the DO ν region, clear sub-bands with = 0 ← 1, 1 ← 0, and 2 ← 1 are observed which enable a good determination of the rotational constant of CH-DO (7.313 ± 0.007 cm), a first for acetylene-water dimer and larger than previously expected.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.4c04599 | DOI Listing |
Sci Rep
December 2024
Department of Chemical Engineering, RVR & JC College of Engineering (A), Guntur, Andhra Pradesh, 522019, India.
The study analyzed the aqueous leaf extracts of Moringa oleifera and Musa sps. for phytochemical components, including flavonoids, sterols, saponins, tannins, and glycosides. The LC-MS analysis revealed gingerol, vicenin-2, caffeic acid, quercetin, and other compounds in the extracts.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
Modifying ZnO nanorods with graphene oxide (GO) is crucial for enhancing photocatalytic degradation by boosting the concentration of reactive oxygen species (ROS) in the reaction medium. In this study, we present a straightforward chemical synthesis of ZnO nanorods embedded on GO, forming a novel nanocomposite, GOZ. This composite serves as an efficient photocatalyst for the sunlight-driven degradation of methylene blue (MB) and ciprofloxacin (CIP).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Innovation Center in Salivary Diagnostics and Nanobiotechnology, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil. Electronic address:
The non-invasive detection of crack/cocaine and other bioactive compounds from its pyrolysis in saliva can provide an alternative for drug analysis in forensic toxicology. Therefore, a highly sensitive, fast, reagent-free, and sustainable approach with a non-invasive specimen is relevant in public health. In this animal model study, we evaluated the effects of exposure to smoke crack cocaine on salivary flow, salivary gland weight, and salivary composition using Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
Dipartmento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90133 Palermo, Italy.
The complex structure of the plant cell wall makes it difficult to use the biomass produced by biosynthesis. For this reason, the search for new strains of microorganisms capable of efficiently degrading fiber is a topic of interest. For these reasons, the present study aimed to evaluate both the microbiological and enzymatic characteristics of the fungus L7strain.
View Article and Find Full Text PDFDent J (Basel)
December 2024
Department of Restorative Sciences, College of Dentistry, Kuwait University, Safat 13110, Kuwait.
Sterilization is required for any biomedical device intended to be used in contact with the human body. Several studies have reported alterations in the bulk and surface properties of such devices after repeated sterilization cycles. These surface modifications may influence other clinical parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!