FERONIA regulates salt tolerance in Arabidopsis by controlling photorespiratory flux.

Plant Cell

Key Laboratory of Plant Design, National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

Published: November 2024

Photorespiration is an energetically costly metabolic pathway in plants that responds to environmental stresses. The molecular basis of the regulation of the photorespiratory cycle under stress conditions remains unclear. Here, we discovered that FERONIA (FER) regulates photorespiratory flow under salt stress in Arabidopsis (Arabidopsis thaliana). FER mutation results in hypersensitivity to salt stress, but disruption of ferredoxin-dependent glutamate synthase 1 (GLU1), an enzyme that participates in the photorespiratory pathway by producing glutamate, greatly suppresses fer-4 hypersensitivity to salt stress primarily due to reduced glycine yield. In contrast, disrupting mitochondrial serine hydroxymethyltransferase1 (SHM1), which is supposed to increase glycine levels by hampering the conversion of glycine to serine in the photorespiratory cycle, aggravates fer-4 hypersensitivity to salt stress. Biochemical data show that FER interacts with and phosphorylates SHM1, and this phosphorylation modulates SHM1 stability. Additionally, the production of proline and its intermediate △1-pyrroline-5-carboxylate (P5C), which are both synthesized from glutamate, also contributes to fer-4 hypersensitivity to salt stress. In conclusion, this study elucidates the functional mechanism of FER in regulating salt tolerance by modulating photorespiratory flux, which greatly broadens our understanding of how plants adapt to high salinity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530776PMC
http://dx.doi.org/10.1093/plcell/koae246DOI Listing

Publication Analysis

Top Keywords

salt stress
20
hypersensitivity salt
16
fer-4 hypersensitivity
12
salt tolerance
8
photorespiratory flux
8
photorespiratory cycle
8
salt
7
photorespiratory
6
stress
6
feronia regulates
4

Similar Publications

Choosing the appropriate reference genes for quantitative real-time PCR (qRT-PCR) is very important for accurately evaluating expression of target genes. L. is a widely used horticultural plant with high ornamental value, which also shows a strong ability to tolerate abiotic stresses.

View Article and Find Full Text PDF

As one of the grave environmental hazards, soil salinization seriously limits crop productivity, growth, and development. When plants are exposed to salt stress, they suffer a sequence of damage mainly caused by osmotic stress, ion toxicity, and subsequently oxidative stress. As sessile organisms, plants have developed many physiological and biochemical strategies to mitigate the impact of salt stress.

View Article and Find Full Text PDF

Rice salt tolerance is highly anticipated to meet global demand in response to decreasing farmland and soil salinization. Therefore, dissecting the genetic loci controlling salt tolerance in rice for improving productivity is of utmost importance. Here, we evaluated six salt-tolerance-related traits of a biparental mapping population comprising 280 F2 rice individuals (Oryza sativa L.

View Article and Find Full Text PDF

As an essential B vitamin, folate participates in one‑carbon metabolism. The 5-methyltetrahydrofolate (5-MTHF) avoids the drawbacks associated with folic acid and native folylpolyglutamate folate in food, thereby emerging as a superior alternative to folate supplement. To enhance the stability and digestibility of 5-MTHF, nanoliposome (NL) was modified using a layer-by-layer self-assembly method with chitosan (CH) and pectin (P).

View Article and Find Full Text PDF

Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!