Fluoroamphiphilic polymers exterminate multidrug-resistant Gram-negative ESKAPE pathogens while attenuating drug resistance.

Sci Adv

Frontiers Science Center for Flexible Electronics, (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.

Published: August 2024

ESKAPE pathogens are a panel of most recalcitrant bacteria that could "escape" the treatment of antibiotics and exhibit high incidence of drug resistance. The emergence of multidrug-resistant (MDR) ESKAPE pathogens (particularly Gram-negative bacteria) accounts for high risk of mortality and increased resource utilization in health care. Worse still, there has been no new class of antibiotics approved for exterminating the Gram-negative bacteria for more than 50 years. Therefore, it is urgent to develop novel antibacterial agents with low resistance and potent killing efficacy against Gram-negative ESKAPE pathogens. Herein, we present a class of fluoropolymers by mimicking the amphiphilicity of cationic antimicrobial peptides. Our optimal fluoroamphiphilic polymer (PDHF) displayed selective antimicrobial ability for all MDR Gram-negative ESAKPE pathogens, low resistance, high in vitro cell selectivity, and in vivo curative efficacy. These findings implied great potential of fluoroamphiphilic cationic polymers as promising antibacterial agents against MDR Gram-negative ESKAPE bacteria and alleviating antibiotic resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352906PMC
http://dx.doi.org/10.1126/sciadv.adp6604DOI Listing

Publication Analysis

Top Keywords

eskape pathogens
16
gram-negative eskape
12
drug resistance
8
gram-negative bacteria
8
antibacterial agents
8
low resistance
8
mdr gram-negative
8
gram-negative
6
eskape
5
pathogens
5

Similar Publications

A bacterial methyltransferase that initiates biotin synthesis, an attractive anti-ESKAPE druggable pathway.

Sci Adv

December 2024

Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.

The covalently attached cofactor biotin plays pivotal roles in central metabolism. The top-priority ESKAPE-type pathogens, and , constitute a public health challenge of global concern. Despite the fact that the late step of biotin synthesis is a validated anti-ESKAPE drug target, the primary stage remains fragmentarily understood.

View Article and Find Full Text PDF

Objectives: Pseudomonas aeruginosa, identified as an ESKAPE pathogen, contributes to severe clinical diseases worldwide and despite its prevalence an effective vaccine or treatment remains elusive. Numerous computational methods are being employed to target hypothetical proteins (HPs). Presently, no studies have predicted multi-epitope vaccines for these HPs.

View Article and Find Full Text PDF

The twenty-first century presents a serious threat to public health due to the growth in antibiotic resistance among opportunistic bacteria, particularly within the ESKAPE group, which includes Enterobacter species with high morbidity, mortality, virulence, and nosocomial dissemination rates. Enterobacter species, especially Enterobacter cloacae, bacteria have developed resistance to multiple antibiotics through mechanisms, such as continuous production of AmpC beta-lactamase. In this study, a comprehensive bioinformatics approach was employed to analyze the genome of Enterobacter cloacae, utilizing sequence data from GenBank (ID: OW968328.

View Article and Find Full Text PDF

Copper oxide nanoparticles (CuONPs) offer promising antimicrobial properties against a range of pathogens, addressing the urgent issue of antibiotic resistance. This study details the synthesis of glutamic acid-coated CuONPs (GA-CuONPs) and their functionalisation on medical-grade silicone tubing, using an oxysilane bonding agent. The resulting coating shows significant antimicrobial activity against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains, while remaining non-toxic to human cells and exhibiting stable adherence, without leaching.

View Article and Find Full Text PDF

Interspecies interactions involving direct competition bacteriocin production play a vital role in shaping ecological dynamics within microbial ecosystems. For instance, the ribosomally produced siderophore bacteriocins, known as class IIb microcins, affect the colonization of host-associated pathogenic species. Notably, to date, only five of these antimicrobials have been identified, all derived from specific and strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!