Enhancing CO electroreduction to ethylene microenvironment regulation in boron-imidazolate frameworks.

Chem Commun (Camb)

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.

Published: September 2024

Using the structure-induced effect of KBH(mim) ligand, four 2-dimensional (2D) boron imidazolate frameworks with identical body framework and different dangling monocarboxylate ligands, have been synthesized. Electrocatalytic results indicate that the surrounding microenvironment regulation could effectively affect the activity and selectivity towards CH. BIF-151 showed the highest electrocatalytic performances with the Faraday efficiency (FE) of 25.94% for CH at -1.4 V . RHE.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc02928cDOI Listing

Publication Analysis

Top Keywords

microenvironment regulation
8
enhancing electroreduction
4
electroreduction ethylene
4
ethylene microenvironment
4
regulation boron-imidazolate
4
boron-imidazolate frameworks
4
frameworks structure-induced
4
structure-induced kbhmim
4
kbhmim ligand
4
ligand 2-dimensional
4

Similar Publications

Identification of immune suppressor candidates utilizing comparative transcriptional profiling in histiocytic sarcoma.

Cancer Immunol Immunother

January 2025

Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Histiocytic sarcoma (HS) is a rare yet lethal malignancy with no established standard of care therapies. A lack of pre-clinical models limits our understanding of HS pathogenesis and identification of therapeutic targets. Canine HS shares multiple clinical and genetic similarities with human HS, supporting its use as a unique translational model.

View Article and Find Full Text PDF

Limited research into the tumor immune microenvironment (TIME) for bladder urothelial carcinoma (BUC), particularly the neglect of the intratumoral microbiota, has hindered the development of immunotherapies targeting BUC. Here, we collect 401 patients with BUC with host transcriptome samples and matched tumor microbiome samples from The Cancer Genome Atlas database. Besides, two independent BUC cohorts receiving immunotherapy were obtained.

View Article and Find Full Text PDF

Despite identifying specific CD8 T cell subsets associated with immunotherapy resistance, the molecular pathways driving this process remain elusive. Given the potential role of CD38 in regulating CD8 T cell function, we aimed to investigate the accumulation of CD38CD8 T cells in lung cancer and explore its role in immunotherapy resistance. Phenotypic analysis of tumoral CD8 T cells from both lung cancer patients and immunotherapy-resistant preclinical models revealed that CD38-expressing CD8 T cells consist of CD38 and CD38 subsets.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by hallmark pathologies that affect many brain regions, including the cellular microenvironment with the hippocampus, ultimately leading to profound deficits in cognition. Surprising recent work has shown that factors in the systemic environment regulate the hippocampal cellular niche; age-associated blood-borne factors exacerbate brain aging phenotypes, whereas youth-associated blood-borne factors, including tissue inhibitor of metalloproteinases 2 (TIMP2), reverse or ameliorate features of brain aging. As aging serves as the major risk factor for AD, and recent work shows that systemic factors can regulate AD pathology, we sought to characterize mechanisms by which the systemic environment regulates CNS phenotypes relevant to AD pathology through changes in neuroinflammation.

View Article and Find Full Text PDF

Background: Tumor-derived small extracellular vesicles (sEVs) play an essential role in reprogramming the tumor microenvironment. Metabolic reprogramming is an essential prerequisite for M2 polarization of tumor-associated macrophages (TAMs). This M2 phenotype is closely related to the immune dysfunction of CD8 T cells and subsequent tumor progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!