Nanoparticle (NP) delivery systems have been actively exploited for cancer therapy and vaccine development. Nevertheless, the major obstacle to targeted delivery lies in the substantial liver sequestration of NPs. Here we report a DNA-engineered approach to circumvent liver phagocytosis for enhanced tumor-targeted delivery of nanoagents in vivo. We find that a monolayer of DNA molecules on the NP can preferentially adsorb a dysopsonin protein in the serum to induce functionally invisibility to livers; whereas the tumor-specific uptake is triggered by the subsequent degradation of the DNA shell in vivo. The degradation rate of DNA shells is readily tunable by the length of coated DNA molecules. This DNA-engineered invisibility cloaking (DEIC) is potentially generic as manifested in both AgS quantum dot- and nanoliposome-based tumor-targeted delivery in mice. Near-infrared-II imaging reveals a high tumor-to-liver ratio of up to ∼5.1, approximately 18-fold higher than those with conventional nanomaterials. This approach may provide a universal strategy for high-efficiency targeted delivery of theranostic agents in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c09479 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.
Invisibility─the remarkable ability to render objects imperceptible─has long been a persistent dream of humankind. However, traditional cloaking materials are typically rigid and inflexible, limiting their adaptability to various shapes and requirements. Even when flexibility is achieved, uncontrollable scattering in complex electromagnetic environments continues to pose significant challenges in the design of flexible cloaks.
View Article and Find Full Text PDFMicrosyst Nanoeng
December 2024
School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Light propagation in non-Euclidean geometry has become a hot topic in recent years, while transformation optics theory demonstrates unique advantages in this respect. A notable application of transformation optics in non-Euclidean space is non-Euclidean invisibility cloak which avoids the challenges of negative refraction and anisotropic materials. In this work, we propose another configuration for non-Euclidean invisibility, capable of achieving invisible across a wide spectrum.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China.
Metasurfaces, which are ultrathin planar metamaterials arranged in certain global sequences, interact uniquely with the surrounding light field and exhibit unusual effects of light modulation. Many interesting applications have been discovered based on metasurfaces, particularly in invisibility cloaks. However, most invisibility cloaks are limited to working in specific directions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!