A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data. | LitMetric

A comparison of machine learning methods for recovering noisy and missing 4D flow MRI data.

Int J Numer Method Biomed Eng

Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA.

Published: November 2024

Experimental blood flow measurement techniques are invaluable for a better understanding of cardiovascular disease formation, progression, and treatment. One of the emerging methods is time-resolved three-dimensional phase-contrast magnetic resonance imaging (4D flow MRI), which enables noninvasive time-dependent velocity measurements within large vessels. However, several limitations hinder the usability of 4D flow MRI and other experimental methods for quantitative hemodynamics analysis. These mainly include measurement noise, corrupt or missing data, low spatiotemporal resolution, and other artifacts. Traditional filtering is routinely applied for denoising experimental blood flow data without any detailed discussion on why it is preferred over other methods. In this study, filtering is compared to different singular value decomposition (SVD)-based machine learning and autoencoder-type deep learning methods for denoising and filling in missing data (imputation). An artificially corrupted and voxelized computational fluid dynamics (CFD) simulation as well as in vitro 4D flow MRI data are used to test the methods. SVD-based algorithms achieve excellent results for the idealized case but severely struggle when applied to in vitro data. The autoencoders are shown to be versatile and applicable to all investigated cases. For denoising, the in vitro 4D flow MRI data, the denoising autoencoder (DAE), and the Noise2Noise (N2N) autoencoder produced better reconstructions than filtering both qualitatively and quantitatively. Deep learning methods such as N2N can result in noise-free velocity fields even though they did not use clean data during training. This work presents one of the first comprehensive assessments and comparisons of various classical and modern machine-learning methods for enhancing corrupt cardiovascular flow data in diseased arteries for both synthetic and experimental test cases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.3858DOI Listing

Publication Analysis

Top Keywords

flow mri
20
learning methods
12
mri data
12
data
9
machine learning
8
methods
8
flow
8
experimental blood
8
blood flow
8
missing data
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!