A deeper knowledge of the dynamic transcriptional activity of promoters and enhancers is needed to improve mechanistic understanding of the pathogenesis of heart failure and heart diseases. In this study, we used cap analysis of gene expression (CAGE) to identify and quantify the activity of transcribed regulatory elements (TREs) in the four cardiac chambers of 21 healthy and ten failing adult human hearts. We identified 17,668 promoters and 14,920 enhancers associated with the expression of 14,519 genes. We showed how these regulatory elements are alternatively transcribed in different heart regions, in healthy versus failing hearts and in ischemic versus non-ischemic heart failure samples. Cardiac-disease-related single-nucleotide polymorphisms (SNPs) appeared to be enriched in TREs, potentially affecting the allele-specific transcription factor binding. To conclude, our open-source heart CAGE atlas will serve the cardiovascular community in improving the understanding of the role of the cardiac gene regulatory networks in cardiovascular disease and therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s44161-022-00182-x | DOI Listing |
Physiol Plant
January 2025
College of Horticulture, Hunan Agricultural University, Changsha, China.
Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF.
View Article and Find Full Text PDFNat Metab
January 2025
Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA.
The short-chain fatty acids (SCFAs) propionate and butyrate have beneficial health effects, are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. To better understand the function of these modifications, we used chromatin immunoprecipitation followed by sequencing to map the genome-wide location of four short-chain acyl histone marks, H3K18pr, H3K18bu, H4K12pr and H4K12bu, in treated and untreated colorectal cancer (CRC) and normal cells as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions and gene expression to access the function of the target regions.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.
This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover.
View Article and Find Full Text PDFAmino Acids
January 2025
Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece.
Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity.
View Article and Find Full Text PDFCommun Biol
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.
Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!