Senescence plays a key role in various physiological and pathological processes. We reported that injury-induced transient senescence correlates with heart regeneration, yet the multi-omics profile and molecular underpinnings of regenerative senescence remain obscure. Using proteomics and single-cell RNA sequencing, here we report the regenerative senescence multi-omic signature in the adult mouse heart and establish its role in neonatal heart regeneration and agrin-mediated cardiac repair in adult mice. We identified early growth response protein 1 (Egr1) as a regulator of regenerative senescence in both models. In the neonatal heart, Egr1 facilitates angiogenesis and cardiomyocyte proliferation. In adult hearts, agrin-induced senescence and repair require Egr1, activated by the integrin-FAK-ERK-Akt1 axis in cardiac fibroblasts. We also identified cathepsins as injury-induced senescence-associated secretory phenotype components that promote extracellular matrix degradation and potentially assist in reducing fibrosis. Altogether, we uncovered the molecular signature and functional benefits of regenerative senescence during heart regeneration, with Egr1 orchestrating the process.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s44161-024-00493-1DOI Listing

Publication Analysis

Top Keywords

regenerative senescence
20
heart regeneration
12
senescence
8
cardiac repair
8
neonatal heart
8
egr1
5
regenerative
5
heart
5
egr1 regulates
4
regulates regenerative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!