Mercury contamination from gold mining in the Amazon poses significant environmental and health threats to the biome and its local populations. The recent expansion of non-industrial mining areas has severely impacted territories occupied by traditional communities. To address the lack of sampling data in the region and better understand mercury dynamics, this study used the probabilistic model SERAFM to estimate the mercury distribution and bioaccumulation in fish. The analysis covered 8,259 sub-basins across three major Amazonian basins: the Branco, Tapajós and Xingu rivers. The findings revealed increasing downstream mercury levels, with notable accumulations in the main watercourses influenced by methylation processes and mining releases. The projected concentrations showed that an average of 27.47% of the sub-basins might not comply with Brazilian regulations, rising to 52.38% in the Branco and Tapajós river basins separately. The risk assessment of fish consumption based on the projections highlighted high mercury exposure levels among traditional communities, particularly indigenous populations, with an average of 49.79% facing an extremely high risk in the Branco and Tapajós river basins. This study demonstrated SERAFM's capacity to fill information gaps in the Amazon while underscoring the need for enhanced data collection, culturally sensitive interventions and regulatory updates to mitigate mercury contamination in gold mining-affected areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359172PMC
http://dx.doi.org/10.3390/toxics12080599DOI Listing

Publication Analysis

Top Keywords

river basins
12
branco tapajós
12
mercury dynamics
8
risk assessment
8
mercury contamination
8
contamination gold
8
traditional communities
8
tapajós river
8
mercury
7
dynamics bioaccumulation
4

Similar Publications

Long-term nitrogen fertilization alters the partitioning of amino acids between citrus leaves and fruits.

Front Plant Sci

January 2025

Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China.

Introduction: The growth of evergreen fruit trees is influenced by the interaction of soil nitrogen (N) and leaf amino acid contents. However, information on free amino acid contents in leaves of fruiting and non-fruiting branches during long-term N fertilizer application remains scarce.

Methods: Here, a four-year field experiment (2018-2021) in a citrus orchard revealed consistently lower total N and amino acid contents in leaves of fruiting compared to non-fruiting branches.

View Article and Find Full Text PDF

The development and implementation of county carbon control action plans in the Yellow River Basin (YRB) are crucial for realizing the "dual carbon" goals and modernizing national governance. Utilizing remote sensing data from 2001 to 2020, this study constructs a light-carbon conversion model and a carbon footprint model to simulate the carbon footprint of county energy consumption in the YRB. Employing spatial autocorrelation and spatial Durbin models, the study examines the temporal-spatial evolution characteristics and spatial effect mechanism.

View Article and Find Full Text PDF

Although sulfur-bearing minerals are valuable resources, they pose significant environmental risks to river ecosystems by releasing hazardous leachate. Accurately tracing these sources is crucial but challenging due to overlapping chemical signatures and pollutant transport dynamics in river systems. This study investigates seasonal and spatial variations in sulfate (SO) and trace element contributions in mining districts of the upper Nakdong River basin, South Korea.

View Article and Find Full Text PDF

Lithospheric strike-slip faulting in central Tibet since 35-32 Ma and implications for the incipient Asian extrusional tectonics.

Natl Sci Rev

February 2025

SinoProbe Laboratory, Key Laboratory of Continental Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China.

The onset age and depth of the central Tibet strike-slip faults are two still unresolved fundamental issues with regard to the Cenozoic tectonic evolution of central Tibet. Here we present a comprehensive dataset of geochronological, geochemical and structural data on recently discovered en-echelon dykes representing the incipient development of strike-slip faulting from the Lunpola basin in central Tibet. Our results provide evidence for mantle-derived, bimodal magmatism linked to lithospheric-scale strike-slip faulting at 35-32 Ma, and demonstrate that the central Tibet strike-slip faults are at least 20 Ma older than previously estimated (15-8 Ma).

View Article and Find Full Text PDF

Vegetation productivity and ecosystem carbon sink capacity are significantly influenced by seasonal weather patterns. The time lags between changes in these patterns and ecosystem (including vegetation) responses is a critical aspect in vegetation-climate and ecosystem-climate interactions. These lags can vary considerably due to the spatial heterogeneity of vegetation and ecosystems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!