Microbial degradation is acknowledged as a viable and eco-friendly approach for diminishing residues of neonicotinoid insecticides. This study reports the dominant strain of Md2 that degrades acetamiprid was screened from soil and identified as , and the optimal degradation conditions were determined. Research indicated that the degradation of Md2 to 100 mg/L acetamiprid was 55.30%. Toxicological analyses of acetamiprid and its metabolites subsequently revealed that acetamiprid and its metabolites inhibited the germination of cabbage seed, inhibited the growth of , and induced the production of micronuclei in the root tip cells of faba beans. Based on the analysis of metabolic pathways, it has been determined that the primary metabolic routes of acetamiprid include N-demethylation to form IM-2-1 and oxidative cleavage of the cyanoimino group to produce IM-1-3. Using 16S rRNA high-throughput sequencing, the results showed that acetamiprid and Md2 elevated the relative abundance of , , and , with increases of 10~12%, 6%, and 9%, respectively, while reducing the relative abundance of , , , and , with decreases of 15%, 8%, 32%, and 6%, respectively. The findings will facilitate the safety evaluation of the toxicological properties of neonicotinoid insecticides, their biodegradable metabolites, and associated research on their degradation capabilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360584 | PMC |
http://dx.doi.org/10.3390/toxics12080572 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057, USA.
A polyphasic taxonomic study was carried out on strain T5W1, isolated from the roots of the aquatic plant . This isolate is Gram-negative, rod-shaped, motile, aerobic and non-pigmented. Nearly complete 16S rRNA gene sequence homology related the strain to , with 98.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
The emergence of carbapenem-resistant (CRKP) poses a significant public health threat, particularly in low- and middle-income countries (LMICs) with limited surveillance and treatment options. This study examines the genetic diversity, resistance patterns, and transmission dynamics of 66 CRKP isolates recovered over 5 years (2015-2019) after the first case of CRKP was identified at a tertiary care hospital in Lima, Peru. Our findings reveal a shift from to as the dominant carbapenemase gene after 2017.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.
Unlabelled: Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals.
View Article and Find Full Text PDFMicrob Genom
January 2025
mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand.
In Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing . This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing found in the environment and their link with human clinical isolates.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Hydrogen Technology, Helmholtz-Zentrum Hereon, Geesthacht, Germany.
Coherent phase transformations in interstitial solid solutions or intercalation compounds with a miscibility gap are of practical relevance for energy storage materials and specifically for metal hydride or lithium-ion compound nanoparticles. Different conclusions on the size-dependence of the transformation conditions are reached by modeling or theory focusing on the impact of either one (internal, solid-state-) critical-point wetting of the nanoparticle surface or coherency constraints from solute-saturated surface layers. We report a hybrid numerical approach, combining atomistic grand canonical Monte Carlo simulation with a continuum mechanics analysis of coherency stress and modeling simultaneously wetting and mechanical constraints.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!