This study investigates the impact of changing parameters on the photocatalytic degradation of carbofuran (CBF) using laser-treated TiO nanotube arrays on a Ti mesh under simulated sunlight irradiation and assessing toxicity during photocatalytic degradation. Various parameters, including the stirring effect, light intensity, initial CBF concentration, and variation in the active surface area of laser-treated TiO photocatalysts, were examined to determine their impact on degradation efficiency. The photodegradation kinetics were monitored using ultra-performance liquid chromatography with a PDA detector (UPLC-PDA) and UV-Vis spectrophotometry, while mineralization was assessed by a total organic carbon (TOC) analyzer. The photocatalytic degradation of CBF is enhanced by an increase in the active surface area of the TiO photocatalyst, light intensity, and the introduction of stirring, but it decreases with an increase in the initial concentration of CBF. The toxicity assessments revealed that the cytotoxicity of CBF initially increased during the degradation process but decreased after further treatment, indicating the formation and subsequent breakdown of toxic intermediates. The phytotoxicity test showed that longer degradation times resulted in higher toxicity to plant growth. This study provides new insights into the photocatalytic degradation of CBF with TiO, the importance of parameter optimization for more efficient treatment, and the use of toxicity tests to confirm the success of the photocatalytic process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360000 | PMC |
http://dx.doi.org/10.3390/toxics12080566 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Laboratory of Applied Chemistry of Materials, Faculty of Science, Mohammed V University in Rabat, Avenue Ibn Batouta BP.1014, Rabat, Morocco.
A simple and inexpensive process from natural phosphate in the presence of Ag ions was used to develop AgO-loaded hydroxyapatite nanocomposites. The structural and textural characterization of the nanocomposites suggests that the AgO nanoparticles are well dispersed on the hydroxyapatite (HAp). The prepared nanocomposites show efficient Rhodamine B (RhB) dye photocatalytic degradation in water under visible and UV-visible light irradiation.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratoire de Physique de la Matière Condensée, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, 2092, Tunisia.
In this study, we aimed to enhance the photocatalytic performance of molybdenum oxide (MoO) thin films by doping with silver (Ag) via a spray pyrolysis technique. The primary objective for silver incorporation was intended to introduce additional energy levels into the band structure of MoO, improving its efficiency. Structural, optical, and photocatalytic properties were analyzed using X-ray diffraction (XRD) and optical spectroscopy.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran.
This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.
View Article and Find Full Text PDFEnviron Res
January 2025
Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, BE1410, Brunei Darussalam.
Bismuth-based photocatalysts proved to have remarkable photoactivity for antibiotic degradation from water. However, the two significant challenges of bismuth-based photocatalysts are the fast charge recombination rate and higher energy band gap. This study successfully synthesized a novel I-Bi/BiWO/MWCNTs (C-WBI) heterostructure composite photocatalysts with shorter energy band-gap and higher charge production capability through interfacial amidation linkage.
View Article and Find Full Text PDFEnviron Res
January 2025
Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an 710123, PR China; School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China. Electronic address:
This paper focuses on the research background of zeolite-based photocatalytic materials, the role of zeolites in photocatalytic materials, and their application in various fields. It focuses on the critical roles of zeolites in photocatalytic materials and their application prospects. It outlines the mechanisms of zeolites in different photocatalytic materials, including adsorption, structural stabilization, domain-limiting, electric field, catalysis, ion exchange, shape-selective, and solvation, which elucidates the potential advantages of zeolites in photocatalytic materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!