This study investigates the growth tolerance mechanisms of to 3-fluorophenol and its removal efficiency by algal cells. Our results indicate that can tolerate up to 100 mg/L of 3-fluorophenol, exhibiting a significant hormesis effect characterized by initial inhibition followed by promotion of growth. In cells, the activities of superoxide dismutase (SOD) and catalase (CAT), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), were higher than or comparable to the control group. Metabolic analysis revealed that the 3-fluorophenol treatment activated pathways, such as glycerol phospholipid metabolism, autophagy, glycosylphosphatidylinositol (GPI)-anchored protein biosynthesis, and phenylpropanoid biosynthesis, contributed to the stabilization of cell membrane structures and enhanced cell repair capacity. After 240 h of treatment, over 50% of 3-fluorophenol was removed by algal cells, primarily through adsorption. Thus, shows potential as an effective biosorbent for the bioremediation of 3-fluorophenol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356416 | PMC |
http://dx.doi.org/10.3390/metabo14080449 | DOI Listing |
This study aimed to elucidate the impact of advanced glycation end products (AGEs) and glucose shock on cardiomyocyte viability, gene expression, cardiac biomarkers, and cardiac contractility. Firstly, AGEs were generated in-house, and their concentration was confirmed using absorbance measurements. AC16 cardiomyocytes were then exposed to varying doses of AGEs, resulting in dose-dependent decreases in cell viability.
View Article and Find Full Text PDFDisappointment is a vital factor in the learning and adjustment of strategies in reward-seeking behaviors. It helps them conserve energy in environments where rewards are scarce, while also increasing their chances of maximizing rewards by prompting them to escape to environments where richer rewards are anticipated (e.g.
View Article and Find Full Text PDFMetabolic differences between males and females have been well documented across many species. However, the molecular basis of these differences and how they impact tolerance to nutrient deprivation is still under investigation. In this work, we use to demonstrate that sex-specific differences in fat tissue metabolism are driven, in part, by dimorphic expression of the Integrated Stress Response (ISR) transcription factor, ATF4.
View Article and Find Full Text PDFObjectives: Sex hormone-binding globulin (SHBG) and testosterone are differentially associated with type 2 diabetes (T2D) risk. We investigated whether these associations differ by HIV and menopausal status in Black South African women living with (WLWH) and without HIV (WLWOH).
Design: Cross-sectional observational.
BMC Genomics
January 2025
Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
Background: Improving the germination performance of bread wheat is an important breeding target in many wheat-growing countries where seedlings are often established in soils with high salinity levels. This study sought to characterize the molecular mechanisms underlying germination performance in salt-stressed wheat. To achieve this goal, a genome-wide association study (GWAS) was performed on 292 Iranian bread wheat accessions, including 202 landraces and 90 cultivars.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!