Methylmalonic acidemia (MMA), propionic acidemia (PA), and cobalamin C deficiency (cblC) share a defect in propionic acid metabolism. In addition, cblC is also involved in the process of homocysteine remethylation. These three diseases produce various phenotypes and complex downstream metabolic effects. In this study, we used an untargeted metabolomics approach to investigate the biochemical differences and the possible connections among the pathophysiology of each disease. The significantly changed metabolites in the untargeted urine metabolomic profiles of 21 patients (seven MMA, seven PA, seven cblC) were identified through statistical analysis ( < 0.05; log2FC > |1|) and then used for annotation. Annotated features were associated with different metabolic pathways potentially involved in the disease's development. Comparative statistics showed markedly different metabolomic profiles between MMA, PA, and cblC, highlighting the characteristic species for each disease. The most affected pathways were related to the metabolism of organic acids (all diseases), amino acids (all diseases), and glycine and its conjugates (in PA); the transsulfuration pathway; oxidative processes; and neurosteroid hormones (in cblC). The untargeted metabolomics study highlighted the presence of significant differences between the three diseases, pointing to the most relevant contrast in the cblC profile compared to MMA and PA. Some new biomarkers were proposed for PA, while novel data regarding the alterations of steroid hormone profiles and biomarkers of oxidative stress were obtained for cblC disease. The elevation of neurosteroids in cblC may indicate a potential connection with the development of ocular and neuronal deterioration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356709 | PMC |
http://dx.doi.org/10.3390/metabo14080428 | DOI Listing |
BMC Plant Biol
December 2024
Biobreeding Institute, Xianghu Laboratory, Hangzhou, 311231, China.
This study delves into the combined effects of seasonal climate variations and MIPS1 gene mutations on the germination rates of soybean cultivars TW-1 and TW75. Through comprehensive metabolomic and transcriptomic analyses, we identified key KEGG pathways significantly affected by these factors, including starch and sucrose metabolism, lipid metabolism, and amino acid biosynthesis. These pathways were notably disrupted during the spring, leading to an imbalance in metabolic reserves critical for seedling development.
View Article and Find Full Text PDFGut Microbes
December 2025
Centre de Recherche en Nutrition Humaine - Rhône-Alpes, INSERM, INRAe, Université Claude Bernard Lyon1, Hospices Civils de Lyon, Pierre Bénite, France.
The development of cardiometabolic (CM) diseases is associated with chronic low-grade inflammation, partly linked to alterations of the gut microbiota (GM) and reduced intestinal integrity. The SINFONI project investigates a multifunctional (MF) nutritional strategy's impact combining different bioactive compounds on inflammation, GM modulation and CM profile. In this randomized crossover-controlled study, 30 subjects at CM-risk consumed MF cereal-products, enriched with polyphenols, fibers, slowly-digestible starch, omega-3 fatty acids or Control cereal-products (without bioactive compounds) for 2 months.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA.
Demands for animal products are projected to increase in the future, and animal production is key to agricultural sustainability and food security; consequently, enhancing ruminant livestock production efficiencies in sustainable ways is a major goal for the livestock industry. Developmental programming is the concept that various stressors, including compromised maternal nutrition during critical developmental windows will result in both short- and long-term changes in the offspring. Ruminant models of developmental programming indicate that compromised maternal nutrition, including global under and over-nutrition, macronutrients, and specific micronutrients, including amino acids (Met and Arg), vitamins (folate, B, and choline), and minerals (sulfur, cobalt, and selenium) can alter offspring outcomes.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, China. Electronic address:
The potential health risks of microplastics (MPs) and their combined exposure with heavy metals such as mercury (Hg) in aquatic environment are increasingly concerned recently. In this work, zebrafish embryos were exposed to different levels of polystyrene microplastics (PS-MPs, ∼0.1 μm) coupled with Hg(II) or/and MeHg at 20 μg/L, to investigate the tissue biodistribution and accumulation of PS-MPs and Hg species, and their interaction, as well as embryo toxicity, oxidative stress and metabolic profiles.
View Article and Find Full Text PDFAnn Epidemiol
December 2024
School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, PR China.
Purpose: Although the gut microbiome is important in human health, its relation to adolescent obesity remains unclear. Here we assessed the associations of the gut microbiome with adolescent obesity in a case-control study.
Methods: In the "Children of 1997" birth cohort, participants with and without obesity at ~17.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!