Removal of Heavy Metals from Wastewaters and Other Aqueous Streams by Pressure-Driven Membrane Technologies: An Outlook on Reverse Osmosis, Nanofiltration, Ultrafiltration and Microfiltration Potential from a Bibliometric Analysis.

Membranes (Basel)

Departamento de Ingeniería Química y Bioprocesos, Universidad de Santiago de Chile (USACH), Av. Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170019, Chile.

Published: August 2024

A bibliometric study to analyze the scientific documents released until 2024 in the database Scopus related to the use of pressure-driven membrane technologies (microfiltration, ultrafiltration, nanofiltration and reverse osmosis) for heavy metal removal was conducted. The work aimed to assess the primary quantitative attributes of the research in this field during the specified period. A total of 2205 documents were identified, and the corresponding analysis indicated an exponential growth in the number of publications over time. The contribution of the three most productive countries (China, India and USA) accounts for more than 47.1% of the total number of publications, with Chinese institutions appearing as the most productive ones. Environmental Science was the most frequent knowledge category (51.9% contribution), followed by Chemistry and Chemical Engineering. The relative frequency of the keywords and a complete bibliometric network analysis allowed the conclusion that the low-pressure technologies (microfiltration and ultrafiltration) have been more deeply investigated than the high-pressure technologies (nanofiltration and reverse osmosis). Although porous low-pressure membranes are not adequate for the removal of dissolved heavy metals in ionic forms, the incorporation of embedded adsorbents within the membrane structure and the use of auxiliary chemicals to form metallic complexes or micelles that can be retained by this type of membrane are promising approaches. High-pressure membranes can achieve rejection percentages above 90% (99% in the case of reverse osmosis), but they imply lower permeate productivity and higher costs due to the required pressure gradients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11355994PMC
http://dx.doi.org/10.3390/membranes14080180DOI Listing

Publication Analysis

Top Keywords

reverse osmosis
16
heavy metals
8
pressure-driven membrane
8
membrane technologies
8
technologies microfiltration
8
microfiltration ultrafiltration
8
nanofiltration reverse
8
number publications
8
removal heavy
4
metals wastewaters
4

Similar Publications

Relating Solute-Membrane Electrostatic Interactions to Solute Permeability in Reverse Osmosis Membranes.

Environ Sci Technol

March 2025

Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States.

Despite the widespread use of reverse osmosis (RO) membranes in water desalination, the role of solute-membrane interactions in solute transport remains complex and relatively not well understood. This study elucidates the relationship between solute-membrane electrostatic interactions and solute permeability in RO membranes. The transport of salt and neutral molecules through charged polyamide (PA) and uncharged cellulose triacetate (CTA) RO membranes was examined.

View Article and Find Full Text PDF

Enhancement of aerobic denitrification process on antibiotics removal: Mechanism and efficiency: A review.

Water Environ Res

March 2025

Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.

Traditionally, the removal of nitrogenous pollutants from wastewater relied on conventional anaerobic denitrification as well as aerobic nitrification and anoxic denitrification. However, anaerobic denitrification is complicated since it requires stringent environmental conditions as well as a large land, therefore, denitrification and nitrification were performed in two separate reactors. Although high pollutant removal efficiency has been achieved via aerobic nitrification and anoxic denitrification, the demerits of this approach include high operational costs.

View Article and Find Full Text PDF

This study introduces a novel application of electrocoagulation (EC) as a pretreatment method for seawater desalination, uniquely focusing on reducing organic and biological fouling in reverse osmosis membranes. The EC process was investigated as an alternative to conventional approaches such as chemical coagulation, chlorination, and fouling inhibitors. EC was conducted in a batch cell using iron electrodes.

View Article and Find Full Text PDF

Enhancing textile wastewater reuse: Integrating Fenton oxidation with membrane filtration.

J Environ Manage

March 2025

Ondokuz Mayıs University, Engineering Faculty, Environmental Engineering Department, Kurupelit, Samsun, Türkiye.

The textile industry produces large volumes of wastewater with complex organic pollutants, dyes, and chemicals that are challenging to treat. This study introduces an integrated approach combining Fenton oxidation and membrane filtration in a continuous flow system to improve textile wastewater treatment. The study optimized the removal efficiencies of COD, TOC, and colour by varying the dosages of Fe and HO, as well as adjusting the pH and flow rates.

View Article and Find Full Text PDF

A review on antifouling polyamide reverse osmosis membrane for seawater desalination.

Environ Res

March 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China; Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215100, China. Electronic address:

Reverse osmosis (RO) membrane technology is well-established in desalination. Aromatic polyamide (PA) thin-film composite (TFC) membrane dominates the commercial RO membrane market due to its high-salt rejection, water flux, and excellent chemical, thermal, and mechanical stabilization. However, membrane fouling is a common problem that has seriously hindered the wide application of RO membrane technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!