This work is an effort to mitigate the existing environmental issues caused by brine discharge from Kuwait's desalination plants and to find an economical and efficient way of managing reject brine from local desalination plants. Low- and high-resistance membranes (LRMs and HRMs, respectively) were used to produce salt and low-salinity water from brine effluent utilizing an electrodialysis (ED)-evaporator hybrid system. The effect of high current densities of 300, 400, and 500 A/m and brine flowrates of 450 and 500 L/h on the quality of produced salt and diluate were investigated for LRM and HRM. The recovered salt purity for LRM is up to 90.58%. Results show that the low-resistance membrane (LRM) achieved higher water recovery, energy consumption, desalination rate, operation time and ion removal rate than those of the high-resistance membrane (HRM) under the same operating conditions. The difference in concentration for 300 A/m between LRM and HRM increased from 0.93% at 10 min to 8.28% at 140 min. The difference in diluate concentration effluent is negligible for both membranes, whereas LRM produced higher concentrate effluent than HRM for all current densities and low flowrate (400 L/h). The maximum difference between LRM and HRM (with LRM achieving higher concentrations) is 10.7% for 400 A/m. The permselectivity of LRM for monovalent cations decreased with current density, whereas the effect on permselectivity for HRM was insignificant for the current density values. The addition of a neutral cell was effective in reducing the buildup of divalent ions on the inner membrane of the cathode side.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356419PMC
http://dx.doi.org/10.3390/membranes14080163DOI Listing

Publication Analysis

Top Keywords

desalination plants
12
lrm hrm
12
low-resistance membrane
8
high-resistance membrane
8
hybrid system
8
reject brine
8
current densities
8
lrm
8
current density
8
hrm
6

Similar Publications

The dataset gathers available regulations of human activities and protection levels of Marine Protected Areas (MPAs) of the European Union (EU). The MPA list and polygons were extracted from the MPA database of the European Environment Agency (EEA) and completed with available zoning systems (all were filtered for their marine area reported under the Marine Strategy Framework Directive). Fully-overlapping MPAs were merged.

View Article and Find Full Text PDF

The Mediterranean Sea is recognized as one of the most threatened marine environments due to pollution, the unintentional spread of invasive species, and habitat destruction. Understanding the biodiversity patterns within this sea is crucial for effective resource management and conservation planning. During a research cruise aimed at assessing biodiversity near desalination plants in the vicinity of Larnaca, Cyprus, conducted as part of the WATER-MINING project (Horizon 2020), specimens of the tanaidacean genus were collected.

View Article and Find Full Text PDF

Interfacial solar steam generation (ISSG) employed for seawater desalination and wastewater purification shows great promise to alleviate global freshwater scarcity. However, simultaneous optimization of water transfer direction in a cost-effective and reliable ISSG to balance thermal localization, salt accumulation, and resistance to oilfouling represents a rare feat. Herein, inspired by seabird beaks for unidirectional water transfer, eco-friendly and cost-effective plant extracts, sodium alginate, and tannic acid, are selected for crafting an innovative Sodium Alginate-Tannic Acid Hemispheric Evaporator (STHE).

View Article and Find Full Text PDF

Amoxicillin (AMX) is a common antibiotic used in both human and veterinary medicine in order to both cure and avoid bacterial infections. Traces of AMX have been found in ground and surface water, urban effluents, water, and wastewater treatment facilities due to its widespread use. The level of hazard and disposal of this class of micropollutants is the reason for concern.

View Article and Find Full Text PDF

The beet webworm (BWW), Loxostege sticticalis (L.), is a notorious migratory agriculture pest of crops and fodder plants, inducing sudden outbreaks and huge losses of food and forage production. Quantifying its spatiotemporal patterns and possible dynamics under future climate scenarios may have significant implications for management policies and practices against this destructive agriculture pest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!