High salinity reduces agriculture production and quality, negatively affecting the global economy. Zinc oxide nanoparticles (ZnO-NPs) enhance plant metabolism and abiotic stress tolerance. This study investigated the effects of 2 g/L foliar Zinc oxide NPs on L. plants to ameliorate 150 mM NaCl-induced salt stress. After precipitation, ZnO-NPs were examined by UV-visible spectroscopy, transmission electron microscopy, scanning transmission electron microscopy, energy dispersive X-ray, and particle size distribution. This study examined plant height, stem diameter (width), area of leaves, chlorophyll levels, hydrolyzable sugars, free amino acids, protein, proline, hydrogen peroxide, and malondialdehyde. Gas chromatographic analysis quantified long-chain fatty acids, and following harvest, leaves, stalks, cobs, seeds, and seeds per row were weighed. The leaves' acid and neutral detergent fibers were measured along with the seeds' starch, fat, and protein. Plant growth and chlorophyll concentration decreased under salt stress. All treatments showed significant changes in maize plant growth and development after applying zinc oxide NPs. ZnO-NPs increased chlorophyll and lowered stress. ZnO-NPs enhanced the ability of maize plants to withstand the adverse conditions of saline soils or low-quality irrigation water. This field study investigated the effect of zinc oxide nanoparticles on maize plant leaves when saline water is utilized for growth season water. This study also examined how this foliar treatment affected plant biochemistry, morphology, fatty acid synthesis, and crop production when NaCl is present and when it is not.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357163 | PMC |
http://dx.doi.org/10.3390/nano14161341 | DOI Listing |
Nat Commun
December 2024
Key Laboratory of UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
Fast-charging metal-ion batteries are essential for advancing energy storage technologies, but their performance is often limited by the high activation energy (E) required for ion diffusion in solids. Addressing this challenge has been particularly difficult for multivalent ions like Zn. Here, we present an amorphous organic-hybrid vanadium oxide (AOH-VO), featuring one-dimensional chains arranged in a disordered structure with atomic/molecular-level pores for promoting hierarchical ion diffusion pathways and reducing Zn interactions with the solid skeleton.
View Article and Find Full Text PDFPharm Dev Technol
December 2024
Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
December 2024
Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, Tamilnadu, 603103, India.
Background: Cancer is the deadliest disease, and neurological disorders are also marked as slow progressive diseases, ultimately leading to death. Stopping two mouths with one morsel was the strategy that we used in this study.
Methods: We have synthesized peony-shaped zinc oxide nanoflowers (ZnO-NFs) and characterized them using various photophysical tools like UV-vis spectroscopy, zeta potential analysis, dynamic light scattering (DLS), FTIR, and scanning electron microscopy (SEM), and utilized these nanoflowers to monitor their anticancer and anti-amyloid activity.
Microb Pathog
December 2024
Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, 38402-018, Brazil.
Silver nanoparticles are recognized for potent antimicrobial properties against pathogenic bacteria, crucial in addressing the severity of leptospirosis, where an ideal treatment is lacking. This study focuses on assessing the antimicrobial efficacy of silver-doped zinc oxide nanoparticles (ZnO:9Ag) on standard Leptospira spp. strains (six species and ten serovars).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861, Sari 4847193698, Iran; Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
The environmental persistence of pharmaceuticals represents a significant threat to aquatic ecosystems and human health, while limitations in conventional wastewater treatment methods underscore the urgent need for innovative and eco-friendly degradation strategies. Photobiocatalytic approaches provide a promising solution for the effective degradation of pharmaceutical contaminants by harnessing the synergistic effects of both photocatalysts and biocatalysts. In this study, we developed a photobiocatalytic composite by co-immobilizing laccase enzyme and zinc oxide nanoparticles on bacterial cellulose synthesized from orange peel waste.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!