Bioactive glass is currently considered a material with a high biocompatibility and has been used both in the field of bone regeneration and in the preparation of cosmetic products with the controlled release of active compounds. The present work involved a study on the synthesis of bioglass using the sol-gel process. The study aims to evaluate the influence of the treatment of bioglass with Polyethylene glycol 4000 (PEG 4000) on its main characteristics. The surface characteristics of this material were obtained by nitrogen adsorption/desorption analysis, using the standard BET (Brunauer-Emmett-Teller) equation, the crystallinity by XRD (X-ray diffraction) analysis, the surface structure by SEM (Scanning Electron Microscope), thermal stability by TGA (ThermoGravimetric Analyses), and chemical bonds changes by FTIR (Fourier transform infrared) spectroscopy. After treatment with PEG 4000, the average diameter of the pores increased insignificantly, the crystallinity peak disappeared, and the SEM analysis highlighted several clusters of very small sizes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357229PMC
http://dx.doi.org/10.3390/nano14161323DOI Listing

Publication Analysis

Top Keywords

peg 4000
12
influence peg
4
0
4
4000 physical
4
physical microstructural
4
microstructural properties
4
properties 58s
4
58s bioactive
4
bioactive glasses
4
glasses bioactive
4

Similar Publications

Significance: Artificial tears remain the cornerstone for managing dry eye disease. The current study's real-world efficacy test of carboxymethylcellulose (CMC), polyethylene glycol (PEG) 400, or sodium hyaluronate (SH)-based lubricants highlights their similar effects on noninvasive tear film parameters over the short term. However, patients reported better relief with SH-based lubricants.

View Article and Find Full Text PDF

Background And Purpose: The study explores basil seed mucilage as a bioadhesive carrier for naproxen sodium, demonstrating its ability to enhance solubility when administered rectally. The mucilage, derived from seeds, showed bioadhesive properties and thermal stability, as confirmed by FTIR spectroscopy and X-ray diffraction analysis.

Experimental Approach: Microspheres were prepared using a double emulsion solvent evaporation technique, varying polymer ratios to optimize drug delivery.

View Article and Find Full Text PDF

In recent years, many studies have focused on improving the bioconversion of cellulose by adding non-ionic surfactants. In our study, the effect of the addition of a polymer, polyethylene glycol (PEG 4000), on the bioconversion of different cellulose materials was evaluated, focusing on the hydrolysis efficiency and structural changes in pure cellulose after the enzymatic hydrolysis process. The obtained results showed that the addition of non-ionic surfactant significantly improved the digestibility of cellulosic materials.

View Article and Find Full Text PDF

Efficient gene transduction and cell viability are critical factors in genetic manipulation for research and therapeutic purposes. In this study, we explored the challenges associated with transducing the NB-4 cell line, a well-established model for acute promyelocytic leukemia (APL), using lentiviral vectors. While the initial transduction efficiency in NB-4 cells reached approximately 30%, we observed a significant decrease in cell viability, a phenomenon not observed in other acute leukemia cell lines such as THP-1 cells.

View Article and Find Full Text PDF

Lignin nanoparticles enable and improve multiple functions of photonic films derived from cellulose nanocrystals.

J Colloid Interface Sci

February 2025

School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia. Electronic address:

Flexible photonic materials derived from cellulose nanocrystals (CNCs) have attracted significant attention, particularly in multifunctional sensors, intelligent detection, and anti-counterfeiting applications. However, the major bottleneck with traditional CNC photonic materials is the provision of flexibility and multifunctional properties which often comes with compromises in optical properties. To address these challenges, we incorporated organosolv lignin nanoparticles (LNPs) and polyethylene glycol (PEG) into CNC films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!