A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Visual Evidence for the Recruitment of Four Enzymes with RNase Activity to the Replication Forks. | LitMetric

Visual Evidence for the Recruitment of Four Enzymes with RNase Activity to the Replication Forks.

Cells

Centre for Synthetic Microbiology (SYNMIKRO), Philipps Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany.

Published: August 2024

Removal of RNA/DNA hybrids for the maturation of Okazaki fragments on the lagging strand, or due to misincorporation of ribonucleotides by DNA polymerases, is essential for all types of cells. In prokaryotic cells such as , DNA polymerase 1 and RNase HI are supposed to remove RNA from Okazaki fragments, but many bacteria lack HI-type RNases, such as . Previous work has demonstrated in vitro that four proteins are able to remove RNA from RNA/DNA hybrids, but their actual contribution to DNA replication is unclear. We have studied the dynamics of DNA polymerase A (similar to Pol 1), 5'->3' exonuclease ExoR, and the two endoribonucleases RNase HII and HIII in using single-molecule tracking. We found that all four enzymes show a localization pattern similar to that of replicative DNA helicase. By scoring the distance of tracks to replication forks, we found that all four enzymes are enriched at DNA replication centers. After inducing UV damage, RNase HIII was even more strongly recruited to the replication forks, and PolA showed a more static behavior, indicative of longer binding events, whereas RNase HII and ExoR showed no response. Inhibition of replication by 6(p hydroxyphenylazo)-uracil (HPUra) demonstrated that both RNase HII and RNase HIII are directly involved in the replication. We found that the absence of ExoR increases the likelihood of RNase HIII at the forks, indicating that substrate availability rather than direct protein interactions may be a major driver for the recruitment of RNases to the lagging strands. Thus, replication forks appear to be an intermediate between type and eukaryotic replication forks and employ a multitude of RNases, rather than any dedicated enzyme for RNA/DNA hybrid removal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352351PMC
http://dx.doi.org/10.3390/cells13161381DOI Listing

Publication Analysis

Top Keywords

replication forks
20
rnase hii
12
rnase hiii
12
replication
9
rnase
8
rna/dna hybrids
8
okazaki fragments
8
dna polymerase
8
remove rna
8
dna replication
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!