We revealed that the encapsulation of enzyme-immobilized silica particles in hollow-type spherical bacterial cellulose (HSBC) gels enables the use of the inside of HSBC gels as a reaction field. The encapsulation of horseradish peroxidase (HRP)-immobilized silica particles (Si-HRPs, particle size: 40-50 μm) within HSBC gels was performed by using a BC gelatinous membrane produced at the interface between suspension attached onto an alginate gel containing Si-HRPs and silicone oil. After the biosynthesis of the BC gelatinous membrane, formed from cellulose nanofiber networks, the alginate gel was removed via immersion in a phosphate-buffered solution. Si-HRP encapsulated HSBC gels were reproducibly produced using our method with a yield of over 90%. The pore size of the network structure of the BC gelatinous membrane was less than 1 μm, which is significantly smaller than the encapsulated Si-HRPs. Consequently, the encapsulated Si-HRPs could neither pass through the BC gelatinous membrane nor leak from the interior cavity of the HSBC gel. The activity of the encapsulated HRPs was detected using the 3,3',5,5'-tetramethylbenzidine (TMB)-HO system, demonstrating that this method can encapsulate the enzyme without inactivation. Since HSBC gels are composed of a network structure of biocompatible cellulose nanofibers, immune cells cannot enter the hollow interior, thus, the enzyme-immobilized particles encapsulated inside the HSBC gel are protected from immune-cell attacks. The encapsulation technique demonstrated in this study is expected to facilitate the delivery of enzymes and catalysts that are not originally present in the in vivo environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353321 | PMC |
http://dx.doi.org/10.3390/gels10080516 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!