The density functional theory study of the thermal C-C reductive coupling from terminal cyanido and hypothetical cyaphido complexes of [Ni(dmpe)] (dmpe = 1,2-bis(dimethylphosphino)ethane) revealed the key reaction intermediate in the reductive C-CP coupling being a σ-CC complex unlike an η-aryl complex in the Ni C-CN system, as already observed in our previous studies. The reaction in THF is endothermic by 4.9 kcal/mol for cyanido with a 32.0 kcal/mol activation barrier and exothermic by 28.5 kcal/mol for cyaphido with an 11.3 kcal/mol activation barrier. To compare our results with the existing experimental data, we chose mesityl as the aryl group and also studied the CP reaction with [Pt(dmpe)] and [Pt(dmpm)] (dmpe = 1,2-bis(dimethylphosphino)methane) fragments. Our findings are consistent with the thermodynamically uphill photolytic C-CP bond activation in phosphaalkynes with Pt and a faster thermal back-reaction with [Pt(dmpe)] compared to that of [Pt(dmpm)]. Based on the natural population analysis, when the polarity of the C-C bond is inverted, the sign of Δ is also inverted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c01194 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!