Honeybees play a crucial role as agricultural pollinators and are frequently exposed to various pollutants, including pesticides. In this study, we aimed to evaluate the toxicity of lambda-cyhalothrin (LCY) and spinetoram (SPI) in honey bee larvae reared in vitro through single (acute) and repeated (chronic) exposure. The acute LD values for LCY and SPI were 0.058 (0.051-0.066) and 0.026 (0.01-0.045) μg a.i./larva, respectively. In chronic exposure, the LD values of LCY and SPI were 0.040 (0.033-0.046) and 0.017 (0.014-0.019) μg a.i./larva, respectively. The chronic no-observed-effect dose of LCY and SPI was 0.0125 μg a.i./larva. Adult deformation rates exceeded 30% in all LCY treatment groups, showing statistically significant differences compared to the solvent control group (SCG). Similarly, SPI-treated bees exhibited significantly more deformities than SCG. Furthermore, we examined the activities of several enzymes, namely, acetylcholinesterase (AChE), glutathione-S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD), in larvae, pupae, and newly emerged bees after chronic exposure at the larval stage (honey bee larval chronic LD, LD/10 (1/10th of LD), and LD/20 (1/20th of LD)). LCY and SPI induced significant changes in detoxification (GST), antioxidative (SOD and CAT), and signaling enzymes (AChE) during the developmental stages (larvae, pupae, and adults) of honey bees at sublethal and residue levels. Our results indicate that LCY and SPI may affect the development of honey bees and alter the activity of enzymes associated with oxidative stress, detoxification, and neurotransmission. These results highlight the potential risks that LCY and SPI may pose to the health and normal development of honey bees.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11354917 | PMC |
http://dx.doi.org/10.3390/insects15080587 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!