Metals play vital roles in biological systems, with iron/heme being essential for cellular and metabolic functions necessary for survival and/or virulence in many bacterial pathogens. Given the rise of bacterial resistance to current antibiotics, there is an urgent need for the development of non-toxic and novel antibiotics that do not contribute to resistance to other antibiotics. Gallium, which mimics iron, has emerged as a promising antimicrobial agent, offering a novel approach to combat bacterial infections. Gallium does not have any known functions in biological systems. Gallium exerts its effects primarily by replacing iron in redox enzymes, effectively inhibiting bacterial growth by targeting multiple iron/heme-dependent biological processes and suppressing the development of drug resistance. The aim of this review is to highlight recent findings on the mechanisms of action of gallium and provide further insights into the development of gallium-based compounds. Understanding the mechanisms underlying gallium's biological activities is crucial for designing drugs that enhance their therapeutic therapies while minimizing side effects, offering promising avenues for the treatment of infectious diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352784PMC
http://dx.doi.org/10.3390/cimb46080541DOI Listing

Publication Analysis

Top Keywords

targeting multiple
8
multiple iron/heme-dependent
8
iron/heme-dependent biological
8
biological processes
8
biological systems
8
biological
5
antimicrobial activity
4
activity galliumiii
4
galliumiii compounds
4
compounds pathogen-dependent
4

Similar Publications

Purpose: Ovarian-Adnexal Reporting and Data System (O-RADS) US provides a standardized lexicon for ovarian and adnexal lesions, facilitating risk stratification based on morphological features for malignancy assessment, which is essential for proper management. However, systematic determination of inter-reader reliability in O-RADS US categorization remains unexplored. This study aimed to systematically determine the inter-reader reliability of O-RADS US categorization and identify the factors that affect it.

View Article and Find Full Text PDF

Telomere shortening in donor cell-derived acute promyelocytic leukemia after allogeneic hematopoietic stem cell transplantation: a case report.

Ann Hematol

January 2025

Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan.

Donor cell leukemia (DCL), in which malignancy evolves from donor's stem cells, is an infrequent complication of allogeneic hematopoietic stem cell transplantation. Acute promyelocytic leukemia (APL) derived from donor cell is extremely rare and only four cases have been reported to date. Herein we report a case of donor cell-derived APL developing 32 months after haploidentical peripheral blood stem cell transplantation using posttransplant cyclophosphamide for myelodysplastic syndromes.

View Article and Find Full Text PDF

Itaconate mechanism of action and dissimilation in .

Proc Natl Acad Sci U S A

January 2025

Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster 3rd Milestone, Faridabad, Haryana 121001, India.

Itaconate, an abundant metabolite produced by macrophages upon interferon-γ stimulation, possesses both antibacterial and immunomodulatory properties. Despite its crucial role in immunity and antimicrobial control, its mechanism of action and dissimilation are poorly understood. Here, we demonstrate that infection of mice with increases itaconate levels in lung tissues.

View Article and Find Full Text PDF

Ependymoma (EPN) is a common form of brain tumor in children, often resistant to available cytotoxic therapies. Molecular profiling studies have led to a better understanding of EPN subtypes and revealed a critical role of oncogenes ZFTA-RELA fusion and EPHB2 in supratentorial ependymoma (ST-EPN). However, the immune system's role in tumor progression and response to therapy remains poorly understood.

View Article and Find Full Text PDF

Colorectal carcinoma (CRC) progression is associated with an increase in PROX1+ tumor cells, which exhibit features of CRC stem cells and contribute to metastasis. Here, we aimed to provide a better understanding to the function of PROX1+ cells in CRC, investigating their progeny and their role in therapy resistance. PROX1+ cells in intestinal adenomas of ApcMin/+ mice expressed intestinal epithelial and CRC stem cell markers, and cells with high PROX1 expression could both self-renew tumor stem/progenitor cells and contribute to differentiated tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!