Migrasomes, the newly discovered cellular organelles that form large vesicle-like structures on the retraction fibers of migrating cells, are thought to be involved in communication between neighboring cells, cellular content transfer, unwanted material shedding, and information integration. Although their formation has been described previously, the molecular mechanisms of migrasome biogenesis are largely unknown. Here, we developed a cell line that overexpresses GFP-tetraspanin4, enabling observation of migrasomes. To identify compounds that regulate migrasome activity in retinal pigment epithelial (RPE) cells, we screened a fecal chemical library and identified cadaverine, a biogenic amine, as a potent migrasome formation inducer. Compared with normal migrating cells, those treated with cadaverine had significantly more migrasomes. Putrescine, another biogenic amine, also increased migrasome formation. Trace amine-associated receptor 8 (TAAR8) depletion inhibited migrasome increase in cadaverine-treated RPE cells, and cadaverine also inhibited protein kinase A phosphorylation. In RPE cells, cadaverine triggers migrasome formation via a TAAR8-mediated protein kinase A signaling pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352285 | PMC |
http://dx.doi.org/10.3390/cimb46080510 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!