Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Static well plates remain the gold standard to study viral infections in vitro, but they cannot accurately mimic dynamic viral infections as they occur in the human body. Therefore, we established a dynamic cell culture platform, based on centrifugal microfluidics, to study viral infections in perfusion. To do so, we used human primary periodontal dental ligament (PDL) cells and herpes simplex virus-1 (HSV-1) as a case study. By microscopy, we confirmed that the PDL cells efficiently attached and grew in the chip. Successful dynamic viral infection of perfused PDL cells was monitored using fluorescent imaging and RT-qPCR-based experiments. Remarkably, viral infection in flow resulted in a gradient of HSV-1-infected cells gradually decreasing from the cell culture chamber entrance towards its end. The perfusion of acyclovir in the chip prevented HSV-1 spreading, demonstrating the usefulness of such a platform for monitoring the effects of antiviral drugs. In addition, the innate antiviral response of PDL cells, measured by interferon gene expression, increased significantly over time in conventional static conditions compared to the perfusion model. These results provide evidence suggesting that dynamic viral infections differ from conventional static infections, which highlights the need for more physiologically relevant in vitro models to study viral infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352947 | PMC |
http://dx.doi.org/10.3390/bios14080401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!