A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Integrated Micro-Heating System for On-Chip Isothermal Amplification of African Swine Fever Virus Genes. | LitMetric

The loop-mediated isothermal amplification (LAMP) is widely used in the laboratory to facilitate rapid DNA or RNA detection with a streamlined operational process, whose properties are greatly dependent on the uniformity and rise rate of temperature in the reaction chambers and the design of the primers. This paper introduces a planar micro-heater equipped with an embedded micro-temperature sensor to realize temperature tunability at a low energy cost. Moreover, a control system, based on the Wheatstone bridge and proportional, integral, and derivative (PID) control, is designed to measure and adjust the temperature of the micro-heater. The maximum temperature rise rate of the designed micro-heater is ≈8 °C s, and it only takes ≈60 s to reach the target temperature. Furthermore, a designed plasmid, containing the B646L gene of African Swine Fever Virus (ASFV), and a set of specific primers, are used to combine with the designed micro-heating system to implement the LAMP reaction. Finally, the lateral flow assay is used to interpret the amplification results visually. This method can achieve highly sensitive and efficient detection of ASFV within 40 min. The sensitivity of this on-chip gene detection method is 8.4 copies per reaction, holding great potential for applications in DNA and RNA amplification.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402446DOI Listing

Publication Analysis

Top Keywords

micro-heating system
8
isothermal amplification
8
african swine
8
swine fever
8
fever virus
8
dna rna
8
rise rate
8
temperature
5
integrated micro-heating
4
system on-chip
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!