Bioresponsive ceramics, a new concept in ceramic biomaterials, respond to biological molecules or environments, as exemplified by salts composed of calcium ions and phosphate esters (SCPEs). SCPEs have been shown to form apatite in simulated body fluid (SBF) containing alkaline phosphatase (ALP). Thus, surface modification with SCPEs is expected to improve the apatite-forming ability of a material. In this study, we modified the surface of α-tricalcium phosphate (α-TCP) using methyl, butyl, or dodecyl phosphate to form SCPEs and investigated their apatite formation in SBF and SBF containing ALP. Although apatite did not form on the surface of the unmodified α-TCP in SBF, apatite formation was observed following surface modification with methyl or butyl phosphate. When ALP was present in SBF, apatite formation was especially remarkable on α-TCP modified with butyl phosphate. These SCPEs accelerated apatite formation by releasing calcium ions through dissolution and supplying inorganic phosphate ions, with the latter process only occurring in SBF containing ALP. Notably, no apatite formation occurred on α-TCP modified with dodecyl phosphate, likely because of the low solubility of the resulting calcium dodecyl phosphate/calcium phosphate composites. This new method of using SCPEs is anticipated to contribute to the development of novel ceramic biomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352136PMC
http://dx.doi.org/10.3390/biomimetics9080502DOI Listing

Publication Analysis

Top Keywords

apatite formation
24
phosphate
9
apatite
8
α-tricalcium phosphate
8
bioresponsive ceramics
8
simulated body
8
body fluid
8
alkaline phosphatase
8
ceramic biomaterials
8
calcium ions
8

Similar Publications

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

It was assumed that only autogenous bone had appropriate osteoconductive and osteoindutive properties for bone regeneration, but this assumption has been challenged. Many studies have shown that synthetic biomaterials must be considered as the best choice for guided bone regeneration. The objective of this work is to compare the performances of nanohydroxyapatite/β-tricalcium phosphate (n-HA/β-TCP) composite and autogenous bone grafting in bone regeneration applications.

View Article and Find Full Text PDF

Bone defects resulting from trauma or diseases that lead to bone loss have created a growing need for innovative materials suitable for treating bone-related conditions. The purpose of this study is, therefore, to synthesize and analyse the synergistic effects of cerium (Ce) and cerium-silver (Ce-Ag) doping of borosilicate bioactive glass (BBG) on the bioactivity, antibacterial properties, and biocompatibility for potential applications in bone tissue engineering. This study utilized a sol-gel Stöber method to synthesize doped BBGs based on S49B4.

View Article and Find Full Text PDF

The erosion caused by high-temperature calcium-magnesium-alumina-silicate (CMAS) has emerged as a critical impediment to the advancement of thermal barrier coating (TBC). In this study, a series of high-entropy rare earth zirconates, (LaSmDyErGd)(ZrCe)O ( = 0, 0.2, 0.

View Article and Find Full Text PDF

Investigation of Calcium Phosphate-Based Biopolymer Composite Scaffolds for Bone Tissue Engineering.

Int J Mol Sci

December 2024

Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege str. 29-33, H-1121 Budapest, Hungary.

We present a novel method for preparing bioactive and biomineralized calcium phosphate (mCP)-loaded biopolymer composite scaffolds with a porous structure. Two types of polymers were investigated as matrices: one natural, cellulose acetate (CA), and one synthetic, polycaprolactone (PCL). Biomineralized calcium phosphate particles were synthesized via wet chemical precipitation, followed by the addition of organic biominerals, such as magnesium gluconate and zinc gluconate, to enhance the bioactivity of the pure CP phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!