Protein arginine methyltransferases (PRMTs) play critical roles in , a protozoan causing the deadliest form of malaria, making them potential targets for novel antimalarial drugs. Here, we screened 11 novel PRMT inhibitors against asexual growth and found that onametostat, an inhibitor for type II PRMTs, exhibited strong antimalarial activity with a half-maximal inhibitory concentration (IC) value of 1.69 ± 0.04 µM. methyltransferase activities of purified PfPRMT5 were inhibited by onametostat, and a shift of IC to onametostat was found in the disruptant parasite line, indicating that PfPRTM5 is the primary target of onametostat. Consistent with the function of PfPRMT5 in mediating symmetric dimethylation of histone H3R2 (H3R2me2s) and in regulating invasion-related genes, onametostat treatment led to the reduction of H3R2me2s level in and caused the defects on the parasite's invasion of red blood cells. This study provides a starting point for identifying specific PRMT inhibitors with the potential to serve as novel antimalarial drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11459956 | PMC |
http://dx.doi.org/10.1128/aac.00176-24 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!