Iterative alignment discovery of speech-associated neural activity.

J Neural Eng

Department of Neurology, Johns Hopkins Medicine, Baltimore, MD 21287, United States of America.

Published: August 2024

. Brain-computer interfaces (BCIs) have the potential to preserve or restore speech in patients with neurological disorders that weaken the muscles involved in speech production. However, successful training of low-latency speech synthesis and recognition models requires alignment of neural activity with intended phonetic or acoustic output with high temporal precision. This is particularly challenging in patients who cannot produce audible speech, as ground truth with which to pinpoint neural activity synchronized with speech is not available.. In this study, we present a new iterative algorithm for neural voice activity detection (nVAD) called iterative alignment discovery dynamic time warping (IAD-DTW) that integrates DTW into the loss function of a deep neural network (DNN). The algorithm is designed to discover the alignment between a patient's electrocorticographic (ECoG) neural responses and their attempts to speak during collection of data for training BCI decoders for speech synthesis and recognition.. To demonstrate the effectiveness of the algorithm, we tested its accuracy in predicting the onset and duration of acoustic signals produced by able-bodied patients with intact speech undergoing short-term diagnostic ECoG recordings for epilepsy surgery. We simulated a lack of ground truth by randomly perturbing the temporal correspondence between neural activity and an initial single estimate for all speech onsets and durations. We examined the model's ability to overcome these perturbations to estimate ground truth. IAD-DTW showed no notable degradation (<1% absolute decrease in accuracy) in performance in these simulations, even in the case of maximal misalignments between speech and silence.. IAD-DTW is computationally inexpensive and can be easily integrated into existing DNN-based nVAD approaches, as it pertains only to the final loss computation. This approach makes it possible to train speech BCI algorithms using ECoG data from patients who are unable to produce audible speech, including those with Locked-In Syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351572PMC
http://dx.doi.org/10.1088/1741-2552/ad663cDOI Listing

Publication Analysis

Top Keywords

neural activity
16
ground truth
12
iterative alignment
8
alignment discovery
8
speech
8
speech synthesis
8
synthesis recognition
8
neural
7
activity
5
discovery speech-associated
4

Similar Publications

Microscopic cell segmentation typically requires complex imaging, staining, and computational steps to achieve acceptable consistency. Here, we describe a protocol for the high-fidelity segmentation of the nucleus and cytoplasm in cell culture and apply it to monitor interferon-induced signal transducer and activator of transcription (STAT) signaling. We provide guidelines for sample preparation, image acquisition, and segmentation.

View Article and Find Full Text PDF

Enhancing Activation Energy Predictions under Data Constraints Using Graph Neural Networks.

J Chem Inf Model

January 2025

Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.

Accurately predicting activation energies is crucial for understanding chemical reactions and modeling complex reaction systems. However, the high computational cost of quantum chemistry methods often limits the feasibility of large-scale studies, leading to a scarcity of high-quality activation energy data. In this work, we explore and compare three innovative approaches (transfer learning, delta learning, and feature engineering) to enhance the accuracy of activation energy predictions using graph neural networks, specifically focusing on methods that incorporate low-cost, low-level computational data.

View Article and Find Full Text PDF

Introduction: Intensive research is dedicated to the development of novel biomaterials and medical devices to be used as grafts in reconstructive surgery, with the purpose of enhancing their therapeutic effectiveness, safety, and durability. A variety of biomaterials, from autologous bone to polymethylmetacrylate, polyether ether ketone, titanium, and calcium-based ceramics are used in cranioplasty. Porous hydroxyapatite (PHA) is reported as a possible material for bone reconstruction, with good signs of biocompatibility, osteoconductive and osteointegrative properties.

View Article and Find Full Text PDF

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.

View Article and Find Full Text PDF

Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.

Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!