Energy storage in electrochemical hybrid capacitors involves fast faradaic reactions such as an intercalation, or redox process occurring at a solid electrode surface at an appropriate potential. Hybrid sodium-ion electrochemical capacitors bring the advantages of both the high specific power of capacitors and the high specific energy of batteries, where activated carbon serves as a critical electrode material. The charge storage in activated carbon arises from an adsorption process rather than a redox reaction and is an electrical double-layer capacitor. Advanced carbon materials with interconnecting porous structures possessing high surface area and high conductivity are the prerequisites 1128to qualify for efficient energy storage. Herein, we have demonstrated that a porous honeycomb structure activated carbon derived from Australian hemp hurd (Cannabis sativa L.) in aqueous NaSO electrolyte showed a specific capacitance of 240 F/g at 1 A/g. The mass ratio of biochar to KOH during the chemical activation associated with the synthesis temperature influences the change in morphologies, and distribution of pore sizes on the adsorption of ions. At higher synthesis temperatures, the tubular form of the honeycomb starts to disintegrate. The hybrid sodium-ion device employing hemp-derived activated carbon (HAC) coupled with electrolytic manganese dioxide (EMD) in an aqueous NaSO electrolyte showed a specific capacitance of 95 F/g at 1 A/g having a capacitance retention of 90 %. The hybrid device (HAC||EMD) can possess excellent electrochemical performance metrics, having a high energy density of 38 Wh/kg at a power density of 761 W/kg. Overall, this study provides insights into the influence of the activation temperature and the KOH impregnation ratio on morphology, porosity distribution, and the activated carbon's electrochemical properties with faster kinetics. The high cell voltage for the device is devoted to the EMD electrode.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639636 | PMC |
http://dx.doi.org/10.1002/cplu.202400408 | DOI Listing |
<b>Background and Objective:</b> Prolonged utilization of chemical fertilizers can harm the soil and disturb the equilibrium of nutrients, resulting in a decline in cherry tomato yield. To enhance the growth of cherry tomato plants, it is necessary to add organic chemicals. The research aimed to determine the best elicitor biosaka concentration to apply to evoke the plant growth of cherry tomatoes (<i>Solanum lycopersicum</i> L.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, 80526, USA.
Phytophthora blight caused by Phytophthora capsici is a serious disease affecting a wide range of plants. Biochar as a soil amendment could partially replace peat moss and has the potential to suppress plant diseases, but its effects on controlling phytophthora blight of container-grown peppers have less been explored, especially in combination of biological control using Trichoderma. In vitro (petri dish) and in vivo (greenhouse) studies were conducted to test sugarcane bagasse biochar (SBB) and mixed hardwood biochar (HB) controlling effects on pepper phytophthora blight disease with and without Trichoderma.
View Article and Find Full Text PDFSci Total Environ
December 2024
TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, D-76139 Karlsruhe, Germany. Electronic address:
As a lesson learned from the COVID-19 pandemic, wastewater-based epidemiology was recognised and used as an important method for surveillance and early detection of SARS-CoV-2. As a result, consideration of wastewater as a source of public health information has gained new prominence, and there is consensus that similar approaches can be used to detect the spread of other viral pathogens or antimicrobial resistance (AMR) in populations. However, the implementation of wastewater monitoring poses challenges in terms of obtaining representative and meaningful samples.
View Article and Find Full Text PDFInorg Chem
December 2024
Textile Pollution Controlling Engineering Center of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
Carbon capture and storage (CCS) from dilute sources is an important strategy for stabilizing the concentration of atmospheric carbon dioxide and global temperature. However, the adsorption process is extremely challenging due to the sluggish diffusion rate of dilute CO. Herein, -phthalic acid (PTA)-derived hierarchical porous activated carbon (PTA-C) with abundant micro- and mesopores was successfully prepared for dilute CO (2 vol %) capture at ambient conditions.
View Article and Find Full Text PDFToxins (Basel)
December 2024
College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China.
Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish () were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!