Dibenzo[,]chrysene can be viewed as a constrained propeller-shaped tetraphenylethylene with reduced curvature and has been utilized to construct dual-pore kagome covalent organic frameworks (COFs) with tightly packed two-dimensional (2D) layers owing to its rigid and more planar structural characteristics. Here, we introduce 2D COFs based on the node 4,4',4″,4‴-(dibenzo[,]chrysene-2,7,10,15-tetraphenyl)tetraamine (DBCTPTA) featuring extended conjugation compared to the dibenzo[,]chrysene-3,6,11,14-tetraamine (DBCTA) node. We establish two exceptionally crystalline imine-linked 2D COFs with a hexagonal dual-pore kagome structure based on the DBCTPTA core. The newly synthesized thienothiophene (TT) and benzodithiophene (BDT)-based DBCTPTA COFs show a tight stacking behavior between adjacent layers. Furthermore, we obtained an unprecedented, interpenetrated electron-donor/acceptor host-guest system with an electron-donating BDT DBCTPTA COF synthesized with the soluble fullerene derivative [6,6]-phenyl-C-butyric acid methyl ester (PCBM) serving as molecular acceptor. The BDT DBCTPTA COF@PCBM film shows a much shorter amplitude-averaged PL lifetime of 7 ± 2 ps compared to 30 ± 4 ps of the BDT DBCTPTA COF film, indicating the light-induced charge transfer process. The successful formation of interpenetrated donor-acceptor heterojunctions within 2D COFs offers a promising strategy for establishing D-A heterojunctions in diverse framework materials with open channel systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c09286 | DOI Listing |
ACS Appl Mater Interfaces
September 2024
Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377 Munich, Germany.
Dibenzo[,]chrysene can be viewed as a constrained propeller-shaped tetraphenylethylene with reduced curvature and has been utilized to construct dual-pore kagome covalent organic frameworks (COFs) with tightly packed two-dimensional (2D) layers owing to its rigid and more planar structural characteristics. Here, we introduce 2D COFs based on the node 4,4',4″,4‴-(dibenzo[,]chrysene-2,7,10,15-tetraphenyl)tetraamine (DBCTPTA) featuring extended conjugation compared to the dibenzo[,]chrysene-3,6,11,14-tetraamine (DBCTA) node. We establish two exceptionally crystalline imine-linked 2D COFs with a hexagonal dual-pore kagome structure based on the DBCTPTA core.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!