Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose introducing an extended Hubbard Hamiltonian derived via the ab initio downfolding method, which was originally formulated for periodic materials, toward efficient quantum computing of molecular electronic structure calculations. By utilizing this method, the first-principles Hamiltonian of chemical systems can be coarse-grained by eliminating the electronic degrees of freedom in higher energy space and reducing the number of terms of electron repulsion integral from O(N4) to O(N2). Our approach is validated numerically on the vertical excitation energies and excitation characters of ethylene, butadiene, and hexatriene. The dynamical electron correlation is incorporated within the framework of the constrained random phase approximation in advance of quantum computations, and the constructed models capture the trend of experimental and high-level quantum chemical calculation results. As expected, the L1-norm of the fermion-to-qubit mapped model Hamiltonians is significantly lower than that of conventional ab initio Hamiltonians, suggesting improved scalability of quantum computing. Those numerical outcomes and the results of the simulation of excited-state sampling demonstrate that the ab initio extended Hubbard Hamiltonian may hold significant potential for quantum chemical calculations using quantum computers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0213525 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!