In the study of stochastic systems, the committor function describes the probability that a system starting from an initial configuration x will reach a set B before a set A. This paper introduces an efficient and interpretable algorithm for approximating the committor, called the "fast committor machine" (FCM). The FCM uses simulated trajectory data to build a kernel-based model of the committor. The kernel function is constructed to emphasize low-dimensional subspaces that optimally describe the A to B transitions. The coefficients in the kernel model are determined using randomized linear algebra, leading to a runtime that scales linearly with the number of data points. In numerical experiments involving a triple-well potential and alanine dipeptide, the FCM yields higher accuracy and trains more quickly than a neural network with the same number of parameters. The FCM is also more interpretable than the neural net.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0222798 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!