The hypoxia-inducible factor-1α (HIF-1α) pathway has been implicated in tumor angiogenesis, growth, and metastasis. Therefore, the inhibition of this pathway is an important therapeutic target for cancer. Thiazole derivatives have been reported to have diverse biological activities, especially in terms of anti-tumor. Consequently, we hypothesized that the introduction of a thiazole functional group in PD was likely to improve the biological potency. Here, three series of PD derivatives containing a thiazole moiety were synthesized, including (a) sulfonyl-containing thiazole derivatives (5 a-l), (b) urea-containing thiazole derivatives (7 a-i), and (c) thiourea-containing thiazole derivatives (9 a-i), and evaluated for HIF-1α inhibitory activity using a Hep3B cell-based luciferase reporter assay. The results showed that about 1/3 of the target compounds showed moderate or strong HIF-1α inhibitory activity, among which compounds 5 d and 7 b showed the strongest inhibitory activity with IC values of 17.37 and 6.42 μM, respectively, and did not show any significant cytotoxicity. Western blot assay results indicated that these two compounds exhibited more potent inhibition, compared with panaxadiol, of the expression of HIF-1α protein in Hep3B cells at a concentration of 50 μM. Molecular docking experiments were also performed to investigate the structure-activity relationship. Compounds 5 d and 7 b can be used as leads for further study and development of novel antitumor drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202401542DOI Listing

Publication Analysis

Top Keywords

inhibitory activity
16
thiazole derivatives
16
hypoxia-inducible factor-1α
8
derivatives thiazole
8
thiazole moiety
8
hif-1α inhibitory
8
compounds 5 d
8
5 d 7 b
8
thiazole
7
derivatives
6

Similar Publications

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Vernonolide A, a Sesquiterpene Lactone with a Unique Carbon Skeleton from .

Org Lett

January 2025

Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i 96720, United States.

A novel sesquiterpene lactone derivative, vernonolide A (), featuring an unprecedented carbon skeleton, along with its plausible biosynthetic precursor, vercinolide I (), and eight known sesquiterpene lactones (-) were isolated and characterized from the whole plants of (L.). The structures of and were elucidated using nuclear magnetic resonance spectroscopic analysis and calculated and experimental electronic circular dichroism spectra.

View Article and Find Full Text PDF

Phytochemical investigation of the roots of yielded a new phenylpropanoid, adenophoride () and a new polyacetylene, adenylene () along with four phenylpropanoids and a polyacetylene. The structures were determined by spectroscopic analysis including NMR, MS, UV and IR. Among the isolated compounds, phenylpropanoids including a new compound showed mild α-glucosidase inhibitory activities.

View Article and Find Full Text PDF

Background: Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.

View Article and Find Full Text PDF

Background: Previously, eight new alkaloids were obtained from the fermentation extract of termite-associated Streptomyces tanashiensis BYF-112. However, genome analysis indicated the presence of many undiscovered secondary metabolites in S. tanashiensis BYF-112.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!