Per- and polyfluoroalkyl substances (PFASs) are emerging contaminants detected ubiquitously and have negative impacts on human health and ecosystem; thus, developing sensing technique is important to ensure safety. Herein, we report a novel colorimetric-based sensor with perfluoroalkyl receptor attached to citrate coated gold nanoparticles (Citrate-Au NPs) that can detect several PFASs including perfluorocarboxylates with different chain lengths (PFHxA, PFOA, PFNA, PFDA), perfluorooctanoic sulfonate (PFOS), and perfluorooctanoic phosphonate (PFOPA). The sensor detects PFASs utilizing fluorous interaction between PFASs and the perfluoroalkyl receptor of Citrate-Au NPs in a solution at a fixed salt concentration, inducing changes in nanoparticle dispersity and the solution color. The rate of spectrum shift was linearly dependent on PFASs concentrations. Citrate-Au NPs with size between 29 - 109 nm were synthesized by adjusting citrate/Au molar ratios, and 78 nm showed the best sensitivity to PFOA concentration (with level of detection of 4.96 µM). Citrate-Au NPs only interacted with PFASs with perfluoroalkyl length > 4 and not with non-fluorinated alkyl compound (nonanoic acid). The performance of Citrate-Au NP based sensor was strongly dependent on the chain length of the perfluoroalkyl group and the head functional group; higher sensitivity was observed with longer chain over shorter chain, and with sulfonate functional group over carboxylate and phosphonate. The sensor was tested using real water samples (i.e., tap water, filtered river water), and it was found that the sensor is capable of detecting PFASs in these conditions if calibrated with the corresponding water matrix. While further optimization is needed, this study demonstrated new capability of Citrate-Au NPs based sensor for detection of PFASs in water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347827PMC
http://dx.doi.org/10.1016/j.wroa.2024.100239DOI Listing

Publication Analysis

Top Keywords

citrate-au nps
20
pfass
9
rate spectrum
8
per- polyfluoroalkyl
8
polyfluoroalkyl substances
8
substances pfass
8
perfluoroalkyl receptor
8
pfass perfluoroalkyl
8
based sensor
8
functional group
8

Similar Publications

Gold nanoparticles (Au-NPs) have been explored as potential vectors for enhancing the antitumor efficacy of doxorubicin (DOX) while minimizing its cardiotoxic effects. However, the impacts of DOX Au-NPs on cardiac function and oxidative stress remain inadequately understood. This study aimed to explore the effects of DOX Au-NPs in comparison to free DOX, focusing on oxidative stress markers, inflammation, ultrastructural changes, and cardiac function.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are emerging contaminants detected ubiquitously and have negative impacts on human health and ecosystem; thus, developing sensing technique is important to ensure safety. Herein, we report a novel colorimetric-based sensor with perfluoroalkyl receptor attached to citrate coated gold nanoparticles (Citrate-Au NPs) that can detect several PFASs including perfluorocarboxylates with different chain lengths (PFHxA, PFOA, PFNA, PFDA), perfluorooctanoic sulfonate (PFOS), and perfluorooctanoic phosphonate (PFOPA). The sensor detects PFASs utilizing fluorous interaction between PFASs and the perfluoroalkyl receptor of Citrate-Au NPs in a solution at a fixed salt concentration, inducing changes in nanoparticle dispersity and the solution color.

View Article and Find Full Text PDF

A colorimetric sensor is fabricated for effective on-site monitoring of Cu ions content based on the distance-dependent optical properties of gold nanoparticles-polyvinyl alcohol-citrate (Au-NPs-PVA-Cy) which plasmonic effect electrostatically was controlled by PVA-Cy stabilizing indigo-carmine (IC) functionalizing. The surface-modified gold nanoparticles were extremely stable with a strong affinity toward Cu ions. Citrate ion was employed as a cross-linking agent for pairs of Au-NPs-PVA-Cy and IC for stabilizing coordination between Cu ion and IC.

View Article and Find Full Text PDF

The understanding of engineered nanoparticle (ENP) fate and transport in soil-water environments is important for the evaluation of potential risks of ENPs to the ecosystem and human health. The effects of pyrite grains and three types of oxyanions-sulfate, phosphate, and arsenate-on the retention of citrate-coated gold nanoparticles (citrate-Au-NPs) were studied in partially saturated soil column experiments. The mobility of Au-NP was found to be in the order: Au-NP-sulfide (originating from pyrite) > Au-NP-sulfate > citrate-Au-NP > Au-NP-arsenate > Au-NP-phosphate.

View Article and Find Full Text PDF

Do particle size and surface functionality affect uptake and depuration of gold nanoparticles by aquatic invertebrates?

Environ Toxicol Chem

April 2015

Environment Department, University of York, Heslington, York, United Kingdom; Food and Environment Research Agency, Sand Hutton, York, United Kingdom.

Because of the widespread use of engineered nanoparticles (ENPs) in consumer and industrial products, it is inevitable that these materials will enter the environment. It is often stated that the uptake of ENPs into organisms in the environment is related to the particle size and surface functionality. To test this assumption, the present study investigated the uptake and depuration of gold nanoparticle (Au NPs) coated with either citrate (Au-citrate NPs), mercaptoundecanoic acid (Au-MUDA NPs), amino polyethylene glycol (PEG) thiol (Au-NH2 NPs), or PEG (Au-PEG NP) by the aquatic invertebrate Gammarus pulex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!