Flooding, as a natural disaster, plays a pivotal role in constraining the growth and development of plants. Flooding stress, including submergence and waterlogging, not only induces oxygen, light, and nutrient deprivation, but also alters soil properties through prolonged inundation, further impeding plant growth and development. However, hypoxia (or anoxia) is the most serious and direct damage to plants caused by flooding. Moreover, flooding disrupts the structural integrity of plant cell walls and compromises endoplasmic reticulum functionality, while hindering nutrient absorption and shifting metabolic processes from normal aerobic respiration to anaerobic respiration. It can be asserted that flooding exerts comprehensive effects on plants encompassing phenotypic changes, transcriptional alterations, protein dynamics, and metabolic shifts. To adapt to flooding environments, plants employ corresponding adaptive mechanisms at the phenotypic level while modulating transcriptomic profiles, proteomic characteristics, and metabolite levels. Hence, this study provides a comprehensive analysis of transcriptomic, proteomic, and metabolomics investigations conducted on flooding stress on model plants and major crops, elucidating their response mechanisms from diverse omics perspectives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11347887 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1389379 | DOI Listing |
BMC Infect Dis
January 2025
Department of Epidemiology, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran.
Introduction: Cutaneous Leishmaniasis (CL) is a zoonosis infection which is endemic in more than 100 countries in Asia, Africa, Europe and America. It was estimated that nearly 20 thousand of new cases are reported in Iran annually. This study aimed to investigate the impact of floods on the incidence of leishmaniasis in Golestan province (northeast of Iran) over nine years, from 2015 to 2023.
View Article and Find Full Text PDFNat Med
January 2025
Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
Flooding greatly endangers public health and is an urgent concern as rapid population growth in flood-prone regions and more extreme weather events will increase the number of people at risk. However, an exhaustive analysis of mortality following floods has not been conducted. Here we used 35.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Technische Hochschule Nürnberg Georg Simon Ohm, Institute of Hydraulic Engineering and Water Resources Management, Nuremberg, Germany.
Through the mobilization of movable objects due to the extreme hydraulic conditions during a flood event, blockages, damage to infrastructure, and endangerment of human lives can occur. To identify potential hazards from aerial imagery and take appropriate precautions, a change detection tool (CDT) was developed and tested using a study area along the Aisch River in Germany. The focus of the CDT development was on near real-time analysis of point cloud data generated by structure from motion from aerial images of temporally separated surveys, enabling rapid and targeted implementation of measures.
View Article and Find Full Text PDFSci Rep
January 2025
Heidelberg University, Medical Faculty Heidelberg, Center for Pediatrics and Adolescent Medicine, Pediatric Neurology and Metabolic Medicine, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
The goal of this analysis is to describe seasonal disaster patterns in Central Europe in order to raise awareness and improve hospital disaster planning and resilience, particularly during peak events. Hospitals are essential pillars of a country's critical infrastructure, vital for sustaining healthcare services and supporting public well-being-a key issue of national security. Disaster planning for hospitals is crucial to ensure their functionality under special circumstances.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Artificial Intelligence for Meteorology, Chinese Academy of Meteorological Sciences, Beijing, China.
Skillful seasonal climate prediction is critical for food and water security over the world's heavily populated regions, such as in continental East Asia. Current models, however, face significant difficulties in predicting the summer mean rainfall anomaly over continental East Asia, and forecasting rainfall spatiotemporal evolution presents an even greater challenge. Here, we benefit from integrating the spatiotemporal evolution of rainfall to identify the most crucial patterns intrinsic to continental East-Asian rainfall anomalies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!