Recent studies have provided new insights into the role of the microbiome in shaping host behavior. However, the relationship between the temporal division of labor among honey bees () and their gut microbial community has not been widely studied. Therefore, we aimed to evaluate the link between the gut microbiome and division of labor in honey bees by examining the microbial absolute abundance and relative composition of 7-day-old nurse bees and 28-day-old forager bees from a natural hive, as well as those of worker bees of the same 14-day-old age showing different behaviors in a manipulated hive. We found that forager bees had fewer core bacteria, particularly gram-positive fermentative genera such as and , with being the most sensitive to host behavioral tasks. Our results showed that forager bees have lower gut community stability compared to nurse bees, suggesting that their gut community is more susceptible to invasion by non-core members. Furthermore, a pollen limitation experiment using caged honey bees indicated that dietary changes during behavioral shifts may be a driving factor in honey bee microbial diversity. This study contributes to a greater understanding of the interaction between the gut microbiome and behavioral tasks and provides a foundation for future assays.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348130PMC
http://dx.doi.org/10.1002/ece3.11707DOI Listing

Publication Analysis

Top Keywords

honey bees
16
gut microbiome
12
division labor
12
labor honey
12
forager bees
12
bees
10
microbiome division
8
nurse bees
8
behavioral tasks
8
gut community
8

Similar Publications

The Anatolian honey bee (Apis mellifera anatoliaca) and Bombus terrestris are important species in Türkiye. In this context, protecting the health of these honey bees is particularly important. Lactic acid bacteria (LAB) and acetic acid bacteria (AAB) are very important for the health of bees.

View Article and Find Full Text PDF

Regional patterns and climatic predictors of viruses in honey bee (Apis mellifera) colonies over time.

Sci Rep

January 2025

Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.

Honey bee viruses are serious pathogens that can cause poor colony health and productivity. We analyzed a multi-year longitudinal dataset of abundances of nine honey bee viruses (deformed wing virus A, deformed wing virus B, black queen cell virus, sacbrood virus, Lake Sinai virus, Kashmir bee virus, acute bee paralysis virus, chronic bee paralysis virus, and Israeli acute paralysis virus) in colonies located across Canada to describe broad trends in virus intensity and occurrence among regions and years. We also tested climatic variables (temperature, wind speed, and precipitation) as predictors in an effort to understand possible drivers underlying seasonal patterns in viral prevalence.

View Article and Find Full Text PDF

The global decline in bee populations poses significant risks to agriculture, biodiversity, and environmental stability. To bridge the gap in existing data, we introduce ApisTox, a comprehensive dataset focusing on the toxicity of pesticides to honey bees (Apis mellifera). This dataset combines and leverages data from existing sources such as ECOTOX and PPDB, providing an extensive, consistent, and curated collection that surpasses the previous datasets.

View Article and Find Full Text PDF

This review provides a comprehensive overview of the direct and indirect effects of neonicotinoid pesticides (NEO-P) within African agricultural ecosystems and identifies research gaps, particularly in the monitoring and regulation of pesticide use. We observed a decline in the numbers of NEO-P studies conducted in Africa since 2019 with 40.7% of the countries reporting at least one study to date.

View Article and Find Full Text PDF

Eusociality, characterized by reproductive division of labor, cooperative brood care, and multi-generational cohabitation, represents a pinnacle of complex social evolution, most notably manifested within the Hymenoptera order including bees, ants, and wasps. The molecular underpinnings underlying these sophisticated social structures remain an enigma, with noncoding RNAs (ncRNAs) emerging as crucial regulatory players. This article delves into the roles of ncRNAs in exerting epigenetic control during the development and maintenance of Hymenopteran eusociality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!