Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Instrument fidelity in message testing research hinges upon how precisely messages operationalize treatment conditions. However, numerous message-testing studies have unmitigated threats to validity and reliability because no established procedures exist to guide of message treatments. Their construction typically occurs in a black box, resulting in suspect inferential conclusions about treatment effects. Because a mixed methods approach is needed to enhance instrument fidelity in message testing research, this article contributes to the field of mixed methods research by presenting an integrated multistage procedure for constructing precise message treatments using an exploratory sequential mixed methods design. This work harnesses the power of integration through crossover analysis to improve instrument fidelity in message testing research through the use of natural language processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349321 | PMC |
http://dx.doi.org/10.1177/15586898221096934 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!