Immunosenescence denotes a state of dysregulated immune cell function characterized by a confluence of factors, including arrested cell cycle, telomere shortening, markers of cellular stress, mitochondrial dysfunction, loss of proteostasis, epigenetic reprogramming, and secretion of proinflammatory mediators. This state primarily manifests during the aging process but can also be induced in various pathological conditions, encompassing chronic viral infections, autoimmune diseases, and metabolic disorders. Age-associated immune system alterations extend to innate and adaptive immune cells, with T-cells exhibiting heightened susceptibility to immunosenescence. In particular, senescent T-cells have been identified in the context of metabolic disorders such as obesity, diabetes, and cardiovascular diseases. Recent investigations suggest a direct link between T-cell senescence, inflammation, and insulin resistance. The perturbation of biological homeostasis by senescent T-cells appears intricately linked to the initiation and progression of metabolic diseases, particularly through inflammation-mediated insulin resistance. Consequently, senescent T-cells are emerging as a noteworthy therapeutic target. This review aims to elucidate the intricate relationship between metabolic diseases and T-cell senescence, providing insights into the potential roles of senescent T-cells in the pathogenesis of metabolic disorders. Through a comprehensive examination of current research findings, this review seeks to contribute to a deeper understanding of the complex interplay between immunosenescence and metabolic health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449820 | PMC |
http://dx.doi.org/10.4093/dmj.2024.0140 | DOI Listing |
Anal Chem
December 2024
Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
Mucosal-associated invariant T (MAIT) cells exhibit significant potential in the assessment of tumor development and immunotherapy. However, there is currently no convenient and efficient method to analyze the quantitative changes of MAIT cells during cancer development and treatment, which has not been extensively studied. Here, we report an electrochemical biosensor designed to efficiently monitor MAIT cells in peripheral blood by simultaneously recognizing Vα7.
View Article and Find Full Text PDFNeoplasia
December 2024
Department of Pathology, Ajou University School of Medicine, Suwon 16499, Republic of Korea. Electronic address:
Glioblastoma, isocitrate dehydrogenase (IDH)-wildtype (GBM), is the most malignant brain tumor in adults, with limited therapeutic intervention. Previous studies have identified a few prognostic markers for GBM, including the methylation status of O-methylguanine-DNA methyltransferase (MGMT) promoter, TERT promoter mutation, EGFR amplification, and CDKN2A/2B deletion. However, the classification of GBM remains incomplete, necessitating a comprehensive analysis.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
December 2024
Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA.
Despite advancements in antiretroviral therapy (ART) that reduces the viral load to undetectable levels and improve CD4 T cell counts, viral eradication has not been achieved due to HIV-1 persistence in resting CD4 T-cells. We, therefore, characterized the gene, which is essential for HIV-1 replication and pathogenesis, from 20 virologically controlled aging individuals with HIV (HIV) on long-term ART and improved CD4 T-cell counts, with a particular focus on older individuals. Peripheral blood mononuclear cell genomic DNA from HIV were used to amplify gene by polymerase chain reaction followed by nucleotide sequencing and analysis.
View Article and Find Full Text PDFAging Cell
December 2024
Translational Dementia Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia.
Proteome changes associated with APOE4 variant carriage that are independent of Alzheimer's disease (AD) pathology and diagnosis are unknown. This study investigated APOE4 proteome changes in people with AD, mild cognitive impairment, and no impairment. Clinical, APOE genotype, and cerebrospinal fluid (CSF) proteome and AD biomarker data was sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Promoting tumor cell senescence arrests the cell cycle of tumor cells and activates the immune system to eliminate these senescent cells, thereby suppressing tumor growth. Nevertheless, PD-L1 positive senescent tumor cells resist immune clearance and possess the ability to secret various cytokines and inflammatory factors that stimulate the growth of tumor cells. Consequently, drugs capable of both triggering senescence in tumor cells and concurrently diminishing the expression of PD-L1 to counteract immune evasion are urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!