The renin-angiotensin system plays a key role in regulating blood pressure, which has motivated many investigations of associated mouse models of hypertensive arterial remodelling. Such studies typically focus on histological and cell biological changes, not wall mechanics. This study explores tissue-level ramifications of chronic angiotensin II infusion in wild-type (WT) and type 1b angiotensin II (AngII) receptor null ( ) mice. Biaxial biomechanical and immunohistological changes were quantified and compared in the thoracic and abdominal aorta in these mice following 14 and 28 days of angiotensin II infusion. Preliminary results showed that changes were largely independent of sex. Associated thickening and stiffening of the aortic wall in male mice differed significantly between thoracic and abdominal regions and between genotypes. Notwithstanding multiple biomechanical changes in both WT and mice, AngII infusion caused distinctive wall thickening and inflammation in the descending thoracic aorta of WT, but not , mice. Our study underscores the importance of exploring differential roles of receptor-dependent angiotensin II signalling along the aorta and its influence on distinct cell types involved in regional histomechanical remodelling. Disrupting the AT1b receptor primarily affected inflammatory cell responses and smooth muscle contractility, suggesting potential therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350382PMC
http://dx.doi.org/10.1098/rsif.2024.0110DOI Listing

Publication Analysis

Top Keywords

angiotensin infusion
8
thoracic abdominal
8
aorta mice
8
mice
6
angiotensin
5
at1b receptors
4
receptors contribute
4
contribute regional
4
regional disparities
4
disparities angiotensin
4

Similar Publications

Oxidative Stress in Kidney Injury and Hypertension.

Antioxidants (Basel)

November 2024

Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN.

View Article and Find Full Text PDF

Intravenous injection of PCSK9 gain-of-function mutation in C57BL/6J background mice on Angiotensin II-induced AAA.

Biochim Biophys Acta Mol Basis Dis

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. Electronic address:

Objective: This study was performed to compare the incidence of Angiotensin II (Ang II)-induced abdominal aortic aneurysms (AAA) between intravenous and intraperitoneal injection of AAV8.mPCSK9 in wild-type (WT) mice with C57BL/6J background and the pathological differences of above model in WT and ApoE mice.

Design: Male WT mice were injected intraperitoneally or intravenously with either a AAV8.

View Article and Find Full Text PDF

VSMC-specific TRPC1 deletion attenuates angiotensin II-induced hypertension and cardiovascular remodeling.

J Mol Med (Berl)

January 2025

Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China.

Article Synopsis
  • TRPC1 is a ion channel linked to cardiovascular issues, with increased expression observed in both treated vascular smooth muscle cells (VSMCs) and aortas of hypertensive mice.
  • Lack of TRPC1 in VSMCs significantly reduces AngII-induced effects like vasoconstriction, hypertension, and heart changes, indicating its crucial role in these processes.
  • The study identifies the EZH2-TRPC1-MEK/ERK pathway as a significant contributor to hypertension, suggesting that targeting TRPC1 or EZH2 could be effective in treating high blood pressure and related cardiovascular problems.
View Article and Find Full Text PDF

Thymidine phosphorylase (TYMP) promotes platelet activation and thrombosis while suppressing vascular smooth muscle cell (VSMC) proliferation. Both processes are central to the development and progression of abdominal aortic aneurysms (AAAs). We hypothesize that TYMP plays a role in AAA development.

View Article and Find Full Text PDF

Reduced ATR Signaling Contributes to Endothelial Dysfunction After Preeclampsia.

Hypertension

December 2024

Department of Health and Human Physiology, The University of Iowa, Carver College of Medicine, Iowa City, IA. (K.S.S., A.E.S.).

Background: Women who had preeclampsia (a history of preeclampsia) have a >4-fold risk of developing cardiovascular disease compared with women who had an uncomplicated pregnancy (history of healthy pregnancy). Despite the remission of clinical symptoms after pregnancy, vascular endothelial dysfunction persists postpartum, mediated in part by exaggerated Ang II (angiotensin II)-mediated constriction. However, the role of vasodilatory ATRs (Ang II type 2 receptors) in this dysfunction is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!