A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

L-ascorbate Alleviates Chronic Obstructive Pulmonary Disease through the EGF/PI3K/AKT Signaling Axis. | LitMetric

L-ascorbate Alleviates Chronic Obstructive Pulmonary Disease through the EGF/PI3K/AKT Signaling Axis.

Curr Med Chem

Department of Nutriology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University.

Published: August 2024

Introduction: In this study, the molecular mechanisms through which Lascorbate (Vitamin C) potentially treats Chronic Obstructive Pulmonary Disease (COPD) were identified. A non-targeted metabolomics analysis revealed metabolic disorders and significantly reduced levels of L-ascorbate in COPD patients compared to healthy subjects.

Method: The COPD rat model was established by exposing them to Cigarette Smoke (CS). The L-ascorbate intervention reduced lung inflammation and histological damage in COPD rat models. Network pharmacology analysis revealed 280 common targets between L-ascorbic acid (drug) and COPD (disease), of which seven core targets were MMP3, MME, PCNA, GCLC, SOD2, EDN1, and EGF. According to molecular docking prediction, L-ascorbate had the highest affinity with EGF. Molecular dynamics simulation indicated relatively stable EGF and L-ascorbate complexes.

Results: The PI3K/AKT signaling pathway was significantly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional analysis.

Conclusion: Finally, the in vivo and in vitro experiments confirmed that L-ascorbate affected COPD by regulating the EGF/PI3K/AKT pathway. In summary, based on network pharmacology and molecular docking analyses, this study revealed that L-ascorbate affects COPD development by regulating the PI3K/AKT signaling pathway through EGF, and thus contributes to the understanding and clinical application of Lascorbate in the treatment of COPD.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0109298673302394240823114448DOI Listing

Publication Analysis

Top Keywords

l-ascorbate copd
12
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
copd
8
analysis revealed
8
copd rat
8
network pharmacology
8
egf molecular
8
molecular docking
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!